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Over the last several years, lattice field theory methods have been applied to numerous theories

beyond the standard model. While steady progress has been made in the area of lattice super-

symmetry, most of the recent work has concentrated on lattice studies of a composite Higgs

mechanism, where fermion condensation due to a new strong interaction spontaneously breaks

electroweak symmetry. We describe some of the successes and controversies in this field in the

last few years. The need for larger scale studies involving appreciable lattice volumes is high-

lighted. We also comment briefly on the continued relevance of these studies of a new strong

interaction in light of the recent experimental discovery of a Higgs boson at 125 GeV. It is argued

that there still remains the possibility that this particle is not an elementary scalar, but may be a

composite state of a new strong interaction. Indeed, it is incumbent upon high energy physicists

to fully explore this scenario before ruling it out. The most important task of beyond the standard

model lattice gauge theory over the next few years will be to answer the question: Is it possible to

have a scalar state, such as a dilaton σ , that is much lighter than the rest of the “hadronic” spec-

trum of this new strong interaction, which should be near a TeV? We mention some early work in

this direction, both on and off the lattice. It is interesting that theories of a warped extra dimension

(the Randall-Sundrum scenarios) play an important role in this regard, and that states in the holo-

graphic dual may be a mixture of composite and elementary degrees of freedom. In particular,

we point to the implications of the observed production gg→ σ and decays σ → γγ,ZZ, for TeV

scale physics beyond the standard model.
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Beyond the standard model Joel Giedt

1. Introduction

Dynamical electroweak symmetry breaking through a new strong interaction has been the
focus of a flurry of work over the last few years. This will be the topic with which I will be mainly
concerned in this review. Unfortunately it is not possible to also cover recent advances in many
other applications of lattice gauge theory to physics beyond the standard model. Other examples
include supersymmetry, matrix models, quantum gravity, extra dimensions, as well as many efforts
to obtain accurate predictions of the standard model in order to look for deviations. To this list
could be added a large number of works that are not devoted to quantum chromodynamics per se,
but that study quantum field theory or many body theory using lattice field theory techniques.

The theory of the elementary standard model Higgs boson has two problems associated with it:
the gauge hierarchy problem and the triviality problem. In the first case, radiative corrections to the
Higgs mass-squared m2 are quadratically divergent, and so the natural scale for m is the one where
new physics takes over, the cutoff scale Λcutoff. This could be the grand unified scale (>∼ 1015 GeV),
or it could be the Planck scale 1019 GeV. Whatever the exact number, it is quite a bit higher than
the electroweak scale 100 GeV, which poses a significant mystery: why is m of order 100 GeV?
There are many possible resolutions to this problem, including electroweak scale supersymmetry,
technicolor and warped extra dimensions. In each case, the hierarchy between the cutoff scale
and the electroweak scale is generated in a natural way that eliminates fine-tuning. In the cases of
supersymmetry and technicolor, this is achieved dynamically through dimensional transmutation:
the theory is weakly coupled at a high scale, but due to running of the gauge coupling a dynamical
scale is generated at low energies, which then becomes an order parameter that sets the scale of
electroweak physics. In supersymmetry this is achieved through new strong dynamics in a hidden
sector and some mechanism of mediation to the observable sector. In addition, the electroweak
scale is rendered technically natural because quadratic corrections are cancelled at high energies,
where soft supersymmetry breaking can be neglected. In technicolor this is achieved through new
strong dynamics with techniquarks, fermions that are charged under the electroweak gauge group
SU(2)L×U(1)Y . In both cases, the fact that strongly coupled gauge theories form condensates
that can break symmetries spontaneously is crucial to the scenarios considered. The warped extra
dimension (Randall-Sundrum) scenario at first look seems quite orthogonal: the hierarchy is deter-
mined by a geometric factor. However, this set-up also has a holographic interpretation in terms
of a four-dimensional theory with a new strong interaction. Thus even in this case, the physics
of nonperturbative, dynamically generated scales is something we would like to understand more
fully.

Triviality also comes with an interesting story, and ought to be addressed by some means if
one is to have a complete theory. Here the problem is that one cannot remove the cutoff, since if
one tries, all couplings in the infrared will go to zero (a trivial theory). In the case of supersym-
metric models, the quartic self-interaction of scalars such as the Higgs fields becomes a function
of gauge couplings, so the triviality problem is replaced by the lack of asymptotic freedom in the
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SU(2)L×U(1)Y gauge theory. (In supersymmetric extensions to the standard model, SU(2)L is no
longer asymptotically free, due to the numerous new particles that are charged under this group.)
This can in principle be addressed by embedding the standard model gauge group into a grand
unified group such as SU(5),SO(10) or E6, provided the representations in the theory are such that
it is asymptotically free. However, in order to obtain realistic physics at low energies, especially
if Yukawa coupling unification is also assumed, a large number of representations must be added
(an unwieldy Higgs sector). In that case, the grand unified theory is not asymptotically free and
so there is again a triviality problem. This is resolved if one proceeds to the next level of unifica-
tion, combining the gauge theory with gravity in the context of string/M theory. Since superstring
theory is finite, the cutoff is no longer required and the triviality problem is solved. Of course
the price one pays is that string/M theory has a vacuum selection problem: there is a vast number
of different string vacua (differentiated by gauge groups, representations and even the number of
large dimensions) and no dynamical mechanism to select our universe as the correct one. This has
even led some physicists to speculate on anthropic solutions to the this problem [1]. See however
counterarguments in the recent review [2].

In the case of warped extra dimensions, the existence of a warped geometry with an ultraviolet
brane and an infrared brane strongly suggests Type IIB superstring theory, with stacks of D3 branes
providing the warped geometry in the near-horizon limit. The flavors in the bulk can be interpreted
in terms of D7 branes, and the ultraviolet brane can be an effective description of a six-dimensional
Calabi-Yau manifold at the large radius end of the throat [3]. Hence the triviality problem is again
solved by a unified theory of gravity and gauge forces.

Technicolor models are more modest, though there is no reason why they cannot be embed-
ded into string/M theory, and through the holographic principle may even be dual to the warped
extra dimension scenario. To address fermion masses and flavor physics, the technicolor theory is
embedded into an extended technicolor model. Generally it is assumed that this theory is asymptot-
ically free (however, in the example of [4] there is a U(1) factor, which again will have a triviality
problem). Since the Higgs is no longer elementary, and the underlying theory is an asymptotically
free gauge theory, the triviality problem is solved.

The focus of this review is models that break electroweak symmetry SU(2)L ×U(1)Y →
U(1)EM through a composite Higgs mechanism, such as fermion condensation in technicolor mod-
els. Since these are supposed to be theories with a phenomenological application, it is important
to address the current experimental situation, and to contrast it with what is the case for the other
models that have been mentioned. There is an apparent discovery of a Higgs boson by ATLAS [5]
and CMS [6], experiments at the Large Hadron Collider at CERN. This comes from 5σ excesses
observed near 125 GeV in the combined 2γ and ZZ→ 4` channels. The rates are consistent with
a standard model Higgs, given the present uncertainties. Other channels have too large of back-
grounds to add much to the story for the integrated luminosity that has been analyzed so far. If
indeed the Higgs boson has been discovered, the experimental significance should increase with
the 2012 running that will be completed at the beginning of 2013. More data and analysis is needed
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in order to be more definitive in more channels; the detailed properties of this new particle must
be explored in order to conclude that it is indeed the standard model Higgs boson. This raises the
question of whether or not it is possible for theories with a composite Higgs mechanism to yield a
state with experimental behavior that is similar to an elementary standard model Higgs boson with
a mass of 125 GeV. Because the compositeness scale is of order 4π f , and f ≈ v =246 GeV, it is
necessary to explain a hierarchy of scales in a dynamical fashion. The way that this would occur is
through the “technidilaton,” a pseudo-Nambu-Goldstone boson associated with spontaneous break-
ing of scale invariance in a nearly conformal gauge theory. If the β function is quite small when the
coupling reaches the value at which fermion condensation sets in, then scale invariance is an ap-
proximate symmetry that is spontaneously broken. Thus in some models of “walking technicolor,”
it may be possible to have a light scalar. This scenario has recently attracted a lot of attention, with
various opinions about its viability. See for example the effective field theory approach and holo-
graphic dual analysis of [7]. It is amusing that supersymmetry could actually rescue technicolor
in this approach! Obviously this assertion needs to be proven by a first principles approach, since
naive dimensional analysis in a nearly conformal gauge theory may not be valid, and lattice gauge
theory is an ideal tool for doing this. However, it is quite a demanding task to study a nearly con-
formal theory on the lattice due to the large hierarchy of scales a� 1/ f � L (where a is the lattice
spacing and L is the extent of the lattice in any of the four spacetime directions), and in fact it is
difficult to be sure whether or not one even has a candidate such theory (as will be seen in much of
this review below). There is, however, no shortage of claims by phenomenologists for the existence
of technidilatons, as well as critics of this proposal who say it is impossible or even inconsistent.
One interesting thing to note is that if the holographic principle is valid, then the technidilaton is
dual to the radion of warped extra dimensional theories. In this case one can study the prospects
for a light dilaton in a weakly coupled five-dimensional dual theory. This has been done, and it has
been found that significant fine-tuning is required unless the theory is supersymmetric [7].

2. Theory background

2.1 Walking behavior versus infrared fixed point

The evolution of the running gauge coupling g = g(µ) is given by the β function, which in
perturbation theory is a power series

dg
d ln µ

= β (g) =−b1g3 +b2g5 +O(g7) (2.1)

In the case where b1,b2 > 0, we find a nontrivial fixed point at two loops, β (g∗) = 0, g∗ 6= 0, where
the O(g7) term is neglected. This phenomenon was noticed early in the study of nonabelian gauge
theories [8], and explored more fully in the well-known work of Banks and Zaks [9]. Provided
b1 > 0, the theory is asymptotically free and so starting from the high scale the theory evolves down
starting at g� 1 to the larger value g∗ where the infrared fixed point is reached. In the canonical
example of SU(3) gauge theory with N f massless fermions in the fundamental representation, this
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fixed point behavior occurs for 9≤ N f ≤ 16, which is the two loop conformal window. This is not
exactly true because the coupling may first reach a critical value gc at which fermion condensation
occurs, modes decouple, and the theory confines instead of approaching the fixed point. Such an
avoidance of the fixed point occurs if g∗ > gc. Often this is spoken of in terms of a dynamical
mass being generated for the fermions when condensation occurs. One can of course go to higher
loop order and ask if this behavior persists. Ultimately one exchanges perturbation theory for a
nonperturbative tool, such as the lattice, and in that case one determines whether or not the infrared
fixed point is a part of the full theory. In supersymmetric quantum chromodynamics, this question
can be answered exactly and reliably using continuum methods, due to fact that the exact β function
is known in a particular scheme—the NSVZ result, and using arguments due to Seiberg. The range
of parameters, especially the number of fermion flavors N f , over which this infrared fixed point
phenomenon occurs is called the conformal window.

Proximity to the conformal window is important to realizing the scenario of walking dynamics,
used in so-called walking technicolor. In this class of models, the fermion masses in the standard
model are given by exchange of the extended technicolor (ETC) gauge boson with the condensate
of technifermions at the ETC scale:

m∼ 〈ψ̄ψ〉ETC

M2
ETC

(2.2)

If there is a walking coupling between the scale METC and the technicolor condensation scale
ΛTC ∼ |〈ψ̄ψ〉TC|1/3, then the condensate at the two scales will be related by renormalization group
evolution,

〈ψ̄ψ〉ETC ≈
(

METC

ΛTC

)γ

〈ψ̄ψ〉TC (2.3)

where γ is the anomalous mass dimension at the approximate fixed point g∗, a nontrivial local
minimum of |β (g)| where |β (g∗)| � 1. The quantity 〈ψ̄ψ〉TC ∼ Λ3

TC is fixed by mW ∼ ΛTC. On
the other hand, the fermion masses are determined by 〈ψ̄ψ〉ETC. Since METC�ΛTC ∼mW in order
to suppress flavor-changing neutral currents, having γ ≈ 1 enhances the fermion masses as needed.

In order to construct such models, it is necessary to find walking dynamics in “theory space,”
and this has been the focus of much recent lattice work. To do this it is necessary to distiguish
between behavior in the presence of an infrared fixed point (conformal dynamics) versus behavior
with a slowly running coupling but spontaneous chiral symmetry breaking and confinement at large
distance scales. We will not describe the theory behind fitting to spontaneous chiral symmetry
breaking, since it is quite standard from quantum chromodynamics. Another rather conventional
approach is to identify a finite temperature transition at which the theory deconfines and chiral
symmetry is restored. Below the critical temperature there is a chiral condensate; hence the theory
cannot be conformal. A few studies have been performed in this direction. However, the fits to
conformal theory may be less familiar, so we summarize these next.
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2.2 Conformal fits

In order to assess the likelihood that a theory flows into an infrared fixed point, it is common
practice to attempt to fit simulation results to the conformal hypothesis. Since virtually all spectral
studies are performed at a nonzero fermion mass m, we are particularly interested in mass deformed
conformal field theory, which has been addressed in Refs. [10–13]. We begin with infinite volume
results. There, masses and decay constants have the hyperscaling behavior

M,F ∼ m1/(1+γ) (2.4)

with a universal exponent γ in all “channels.” From [12] we also have for the chiral condensate,

〈ψ̄ψ〉 ∼ m(3−γ)/(1+γ) (2.5)

Another interesting quantity that could be measured is the gluon condensate

〈Tr FµνFµν〉 ∼ m4/(1+γ) (2.6)

However, this operator mixes with the identity operator so there is a large divergent contribution
that must be subtracted off before the fit can be performed. There are some thoughts that using
Wilson flow (a.k.a. gradient flow) would allow for a better determination of this quantity, though
the details behind this still need to be worked out.

Lattice simulations are performed in finite volume, so one can ask: What are the finite volume
versions of these formulae? One answer to this question is provided by the theory of finite volume
corrections where for instance mπ,L = mπ + cg̃1(mπL,T/L), with g̃1(λ ,η) a known function [14,
15], mπ the infinite volume limit, and c a parameter that can be fit to; L is the extent of the lattice in
any of the three spatial directions and T is its extent in the temporal direction. The Lattice Higgs
Collaboration has taken this approach in order to obtain infinite volume results, where either chiral
perturbation theory or hyperscaling relations can be applied. Another answer to this question is
given by the theory of finite size scaling, which should reduce to the infinite volume results at
sufficiently large L. Generally, the form of the scaling function is not known and it is dependent
upon the “channel” in which one looks. It has the form

ξL/L = f (mL1+γ) (2.7)

where ξL ∼ 1/ML,1/FL, correlation lengths in finite volume. One should keep in mind that at
finite lattice spacing there will be scaling violations, which are expressed at leading order by an
additional term:

ξL/L = f (mLym)+L−ωg(mLym) (2.8)

Straightforward analysis shows that this is equivalent to the discretization error associated with a
nonzero lattice spacing a 6= 0.
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2.3 Schrödinger functional analysis

In this case one works on a (L/a)4 lattice with Dirichlet boundary conditions in the temporal
direction, which enforce a background gauge field. For instance for gauge group SU(2),

Ui(0,x) = exp[ησ3a/iL], Ui(L,x) = exp[(π−η)σ3a/iL] (2.9)

with η = π/4 and i = 1,2,3. The fermions are also subject to boundary conditions at t = 0,L.
Boundary counterterms must be introduced in order to get the correct, renormalized continuum
limit in the quantum theory [16].

2.3.1 Running coupling

The running coupling is obtained from

ḡ2 = k
〈

∂S
∂η

〉−1

(2.10)

The constant k is chosen such that ḡ = g0, the bare coupling, at leading order in perturbation theory.
Evaluating (2.10), one obtains values of ḡ nonperturbatively at several values of g0 and L/a. From
this “data” one constructs the step scaling function

Σ(u,s,a/L) = ḡ2(g0,sL/a)|ḡ2(g0,L/a)=u (2.11)

where s > 1 is the scaling parameter, which might be 3/2 or 2 for instance. This relates the running
coupling on a lattice of size (sL/a)4 to the one on a lattice of size (L/a)4, at fixed g0, and hence
fixed value of a.

A few comments are in order here. By taking an increasing sequence of L/a for which
ḡ2(g0,L/a) = u, with u,L fixed, one obtains

a1 > a2 > · · · , g(1)0 > g(2)0 > · · · (2.12)

on the weak coupling side of a putative infrared fixed point, where the continuum limit exists.
Thus the continuum limit of the running coupling ḡ2(g0,L/a) is just ḡ2(L) = u. Since we hold
the sequence of bare couplings fixed under the rescaling L/a→ sL/a, the same sequence of lattice
spacings occur. Thus the continuum limit obtained from

σ(u,s) = lim
a/L→0

Σ(u,s,a/L) (2.13)

gives the running coupling ḡ2(sL) on a lattice of physical size sL for corresponding value of ḡ2(L)=
u.

Of course we really cannot take L/a→∞ so one must fit the sequence of values to an assumed
form of the discretization errors, which should be a power series in a/L. Thus, having an O(a)
improved action is advantageous in obtaining the continuum limit. It should also be emphasized
that a reliable extrapolation, with physics being in the basin of attraction of the ultraviolet fixed
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Figure 1: Step scaling function with constant continuum extrapolation, suggesting an infrared fixed point
where σ = u. Taken from [17].

point g0 = 0 where the continuum limit exists, requires that small values of g0 actually be part
of the calculation. Near the bottom of the conformal window, where the interesting phenomena
occur, one is especially concerned about understanding the flow of ḡ at large values of ḡ. This
creates a tension in the method. One needs small g0 in order to obtain continuum physics (or more
importantly a power series in a where only the first few terms are important), and yet one demands
a large value of ḡ(L). This requires a large value of L/a, even more so if the coupling is running
slowly. Sometimes it is claimed that step scaling allows one to avoid having to fit a large hierarchy
of scales on the same lattice. But if one wants good control over discretization errors and a large
value of ḡ(L), it is actually necessary to have a large hierarchy of scales on a single lattice. The
reliability of the whole method is systematically improved by increasing the size of volumes (L/a)4

that are included in the analysis. More work needs to be done in this direction in order to confirm
the results of studies that have been done to date, which involve fairly small values of L/a. Of
course this will require considerably more computing resources than have been employed in the
existing studies.

A fixed point is obtained if σ(u,s) = u: scaling the lattice by s leaves the running coupling
unchanged, ḡ(sL) = ḡ(L). Thus one typically plots σ(u,s)/u versus u, and looks for the curve to
pass through unity. An example, taken from [17], is shown in Fig. 1.

2.3.2 Anomalous mass dimension

The anomalous mass dimension is obtained from the pseudoscalar renormalization constant
ZP. Because ψ̄ψ and ψ̄γ5taψ are related by a chiral rotation (ta is a generator of the flavor symme-
try group), the divergent parts of the Z factors of these two operators are equal. This is enough to
make the anomalous dimensions equal.1 This is certainly advantageous, since computing the Z fac-
tor for the flavor singlet mass operator ψ̄ψ would involve quark-disconnected diagrams, something

1We thank the authors of [18] for explaining this to us.
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that we would like to avoid because of the high computational cost. In the Schrödinger functional
approach, ZP is extracted from

ZP(g0,L/a) =
c
√

Cboundary

CP(L/2)
(2.14)

where Cboundary is a boundary-to-boundary correlator and CP(t0) is the pseudoscalar correlation
function from the boundary t = 0 to an interior point t0. The constant c is immaterial in what
follows. One constructs the step scaling function

ΣP(u,s,a/L) =
ZP(g0,sL/a)
ZP(g0,L/a)

∣∣∣∣
ḡ2(g0,L/a)=u

(2.15)

Subsequently a continuum limit is taken

σP(u,s) = lim
a/L→0

ΣP(u,s,a/L) (2.16)

One then uses the scaling behavior

σP(u,s) = s−γ(u) (2.17)

to extract the exponent in the vicinity of the fixed point u∗, provided one exists.

3. Results for various theories

In the last five years several theories have been studied using the methods just described. In
this section we will summarize the most recent work. We start with a controversial case, which is
also the one that has been studied most extensively.

3.1 SU(3) with twelve fundamental flavors

At first glance, the claims of the different lattice groups seem quite incompatible with each
other. However, under closer examination, what one finds is that different methods, lattice actions
and assumptions lead to different conclusions. Twelve flavors becomes a prime example of the
difficulty of reaching incontrovertible conclusions in the search for nearly conformal gauge theories
on the lattice. Part of the difficulty comes from the fact that this theory is quite close to the edge
of the conformal window, so that it is easy to be confused by preliminary results. It also seems
that artifacts and deviations from leading order chiral perturbation theory are enhanced by the large
number of flavors, which leads to further complications in interpreting results.

One thing that has been learned is that the phase diagram of the twelve flavor theory contains
regions with problematic lattice artifacts. For instance, Ref. [19] finds a novel phase where the sin-
gle site shift symmetry of staggered fermions is spontaneously broken. Finite and zero temperature
studies were performed, with the result that two well-separated bulk transitions were identified.
The fact that two bulk transitions can occur in the staggered formulation was noticed earlier by the
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authors of [20, 21]. In this work it was argued that chiral symmetry is restored in the continuum
limit, on the weak side of the second bulk transition. The existence of the “second jump” was
correlated with Naik improvement of the fermion action in a recent work [22].

In [23] DeGrand has analyzed the Lattice Higgs Collaboration results by a finite-size scaling
approach that does not assume a form for the scaling function. He finds an exponent γ ∼ 0.35 across
several channels (although with quite large errors) and reasonable fits to the finite-size scaling
hypothesis. This can be interpreted as supportive of a conformal or nearly conformal theory in the
infrared.

Refs. [24, 25] draw the conclusion that twelve flavors exhibits spontaneous chiral symmetry
breaking. They have examined fits to this hypothesis in the Nambu-Goldstone boson (NGB) spec-
trum, the “pion” decay constant fπ , the chiral condensate, non-NGB hadronic states and a confining
static potential (nonzero string tension). Note that in a conformal scenario even the masses of the
non-NGB states would go to zero in the chiral limit. They also attempt a fit to the conformal
hypothesis with a well-motivated scaling function, finding a low level of confidence in that case:
χ2/d.o. f .= 8.79. More recently, in [26] they reach similar conclusions, but now with an analysis
that does not make any assumptions about the scaling function. The spline based method used here
has much smaller errors than [23]. It finds that γ extracted from fπ is significantly different from
the other channels.

Ref. [27] performs a fit of the Lattice Higgs Collaboration data with a conformal hypothesis
plus additional terms that are motivated by the Schwinger-Dyson equations and additional mass
deformations that go beyond the scaling hypothesis of [10–13]. These assumptions are

MX =CX m1/(1+γ)+DX m, F =CFm1/(1+γ)+DFm,

〈ψ̄ψ〉= ACm+BCm(3−γ)/(1+γ)+CCm3/(1+γ)+DCm3 (3.1)

Neglecting the D terms in these equations, they obtain χ2/d.o. f . = 2.5, with γ ≈ 0.39. They find
a fairly consistent conformal fit for γ , though there is some tension in the fπ channel, as can be
seen in Fig. 2. Including the D terms as well as finite volume corrections gives a much better fit,
χ2/d.o. f .= 0.95.

Ref. [28] finds evidence of an infrared fixed point from the bare step scaling function in Monte
Carlo renormalization group studies. For this result an adjoint gauge action term was added and
finite volume corrections were more carefully addressed.

At strong coupling, Ref. [29] finds a bulk first order phase transition using unimproved stag-
gered fermions. This phase transition ends at finite bare mass, and they have shown evidence for
a second order critical endpoint, where there is a massless scalar hadron. They interpret this as a
trivial theory, though further exploration is needed in order to demonstrate this conjecture. On the
weak coupling side of the transition, they interpret their results as being supportive of chiral sym-
metry breaking. However, the study is quite preliminary and requires larger volumes and smaller
fermion masses. It is clear that there are artifacts that still need to be addressed, since for instance
their linear fit of m2

π versus m does not pass through m2
π = 0 at m = 0. They have not attempted a
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Figure 2: Appelquist et al. [27] fits in various channels.

conformal fit to their data so it is difficult to judge which hypothesis better describes the simulation
results.

LatKMI find that their twelve flavor simulations with the HISQ action are supportive of an
infrared fixed point [30]. They perform a finite size scaling study that is similar to [23], obtaining
γ = 0.45(5); however, they use a different method for estimating errors, and hence have a much
smaller uncertainty. Their Fig. 13 does show some tension between the different channels, where
all data are included in the analysis. By slicing up the data in various ways and only fitting parts of
it, they are able to relieve the tension. Plots of fπ/mπ and mρ/mπ versus mπ show a behavior that is
consistent with hyperscaling (approximately constant in the chiral limit), rather than spontaneous
chiral symmetry breaking (sharp increase in the chiral limit). However, when they attempt a fit to
chiral perturbation theory using only data with small masses m≤ 0.08, they find χ2/d.o. f .= 0.88.
They also find a nonzero fπ in the chiral limit with a good fit to chiral perturbation theory. They
caution, however, that mπ/ fπ is outside the range of validity of chiral perturbation theory.

3.2 SU(3) with two flavors of sextet fermions

The sextet is the two-index symmetric representation. It is thus in the same family of theories
as the adjoint representation for SU(2) (which has been studied extensively and found to be con-
formal in the infrared), and the decuplet representation in SU(4). The sextet is in some sense the
most minimal technicolor model, as there are precisely the right number of NGBs to be eaten by
the W±,Z, leaving no extra NGBs to be given mass by chiral symmetry violating terms.

Ref. [24] finds chiral symmetry breaking, using fits to this hypothesis in the NGB spectrum,
the “pion” decay constant fπ and the chiral condensate. In the follow-up work [26] they find that
fitting to the conformal hypothesis gives very different values of γ in the various channels. Hence
they conclude that the sextet model does not have an infrared fixed point and is chirally broken.

Ref. [31] finds evidence of an infrared fixed point, though they state that their results could
also be explained by a walking theory. They use the Schrödinger functional method and measure a
discrete beta function, which appears to pass through zero. Interestingly, they also find a value of γ
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that is quite similar to the SU(2) and SU(4) cases with two flavors in the the two-index symmetric
representation.

Ref. [32, 33] continues the study of the finite temperature transition. The idea is that if the
critical coupling βc scales properly with the lattice temporal extent Nt , then chiral symmetry is
spontaneously broken in the continuum theory at zero temperature. More definite values for the
peak of the chiral susceptibility are needed at more values of Nt in order to reach firm conclusions.

Ref. [34] studies the possibility of a “Higgs impostor” in the sextet model. While they outline
the study of flavor singlet 0++ states in this theory, the results in this work are mainly further evi-
dence in support of spontaneous chiral symmetry breaking, and evidence against a mass deformed
conformal field theory.

3.3 SU(3) with ten fundamental flavors

This theory is believed to be near the bottom of the conformal window. Eight flavors is gen-
erally accepted as being below the conformal window. Many studies have concluded that twelve
flavors is inside the conformal window. If we accept these conclusions, then ten flavors may be a
walking theory. The lattice studies that have been performed to date find a fairly large value of γ ,
close to unity, as required for phenomenological applications. Thus this theory is well motivated
as a theory for extensive study. Of course, it is more difficult since the number of flavors is not a
multiple of four. For this reason non-rooted staggered fermions cannot be used.

Early ten flavor work includes [35, 36] which report results of a Schrödinger functional study.
They found behavior that they concluded was consistent with an infrared fixed point and large
anomalous mass dimension γ . However, the results are quite preliminary. This study used unim-
proved Wilson fermions (no clover improvement term, and hence O(a) discretization errors), and
the plaquette gauge action without boundary counterterms. This simple set-up obviously leaves
room for future improvements with systematic errors under better control. As usual in the many
flavors theories, a bulk transition is encountered at strong coupling, which for them occurs at
β = 6/g2

0 = 4.4. The lattices used are fairly small: 64, 84 and 124. It will be interesting to see
what more extensive and refined Schrödinger functional studies reveal in the ten flavor theory.

Ref. [37] is recent and finds that fits to the mass deformed conformal hypothesis are favored.
Interestingly they find γ ≈ 1 for the exponent, the value preferred by solutions to flavor-changing
neutral current problems. They motivate their study of N f = 10 based on their positive findings in
the N f = 6 case: an enhanced condensate [38] and a reduced S-parameter [39]. The good conformal
fits that they are able to achieve could also correspond to a nearly conformal theory. It will be very
interesting to see their analysis of the S-parameter in the ten flavor theory, once it is available.
Based on their N f = 6 results, it may be quite small due to degeneracy between the vector and
pseudovector mesons. The N f = 10 results are from a single volume (323× 64), and in order to
probe the small mass regime, larger volumes will be required. This is an expensive proposition,
as the authors of this work have elected to use domain wall fermions due to their superior chiral
properties. While this allows them to measure the chiral condensate, and to study N f = 10 without
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Figure 3: Edinburgh-style plot to detect mass at which finite volume corrections set in. This occurs when
the data begins to move up and to the right. For ten flavors, it can be seen that the three largest masses are
largely free of finite volume corrections. Figure from [37].

“rooting,” the computational cost is daunting. Due to the problem of fixed topology, the authors
had to study observables in both ordered start configurations (zero topological charge sector) and
disordered start configurations (large topological charge sectors). The difference between the two
results was included as a (significant, 3%-7%) systematic error. They are working to measure
topological susceptibility and use this to calculate corrections that come from working in fixed
topological sectors. This is an illustration of a problem that occurs when chiral lattice fermions are
used with a large number of flavors: the fermion determinant raised to the N f power is prohibitively
small near a topological transition.

In spite of working on a fixed lattice volume 323×64, they are able to quantify finite volume
effects using “Edinburgh-style plots.” Here one plots ratios of physical observables versus each
other. On the vertical axis is plotted mN/ fπ while on the horizontal axis is plotted mπ/ fπ . As
m→ 0, when in the infinite volume regime, the points move to the left. But once finite volume
corrections start to take over, the points move up and to the right. This can then be used as an
indicator of the range of masses for which finite volume corrections are under control. Examples
of this behavior are shown in Fig. 3.

3.4 SU(2) with fundamental flavors

Works on this topic appearing in these proceedings include [40, 41]. Older work is [17, 42]
which studied N f = 6 using the Schrödinger functional method, finding a slowly running coupling
and 0.135 < γ < 1.03. In that case L/a = 6,8,10,12,14,16 was simulated. However, L/a = 6 was
discarded because large lattice artifacts were found.

A more recent work is [43], which studies N f = 4,6 and 10. They also use the Schrödinger
functional, and find for six flavors that the results are inconclusive as to whether or not there is an
infrared fixed point. On the other hand for four flavors the theory is QCD-like and in the ten flavors
case the theory has a Banks-Zaks fixed point behavior.
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βL L/a = 6 L/a = 8 L/a = 12 L/a = 16

8 0.4700(2) 0.4706(4) 0.4705(5) 0.4707(10)
6 0.6148(3) 0.6159(5) 0.6180(9) 0.6181(19)
4 0.8897(9) 0.8897(13) 0.895(4) 0.895(3)
3 1.1528(16) 1.156(3) 1.150(2) 1.146(4)
2 1.651(4) 1.653(5) 1.637(6) 1.624(13)
1.7 1.924(4) 1.907(5) 1.905(11) 1.896(13)
1.5 2.183(3) 2.137(7) 2.116(11) 2.10(2)
1.3 2.542(8) 2.473(9) 2.382(11) 2.37(2)
1 4.03(2) 3.55(2) 3.23(3) 3.09(4)

Table 1: The measured values [43] of ḡ2 at each βL = 4/g2
0 and L/a with ten flavors of fundamental repre-

sentations fermions in the gauge group SU(2).

Actually, an interesting phenomenon occurs for ten flavors in [43], observed by carefully ex-
amining Table 4 of their work, which is reproduced here as Table 1. It can be seen that the running
coupling does not change with increasing L/a for βL = 4/g2

0 = 3,4,6 and 8. However, this is not
fixed point behavior, since ḡ takes on markedly different values over this wide range of bare g0.
The correct understanding of this is in terms of a very small one-loop contribution to the β function
and a negligible higher order contribution. At one loop

1
g2(6)

− 1
g2(16)

=
1

48π2 ln
8
3
⇒ g2(16)−g2(6)

g2(6)
≈ g2(6)×2.07×10−3 (3.2)

so that the relative change in ḡ2 is far less than a percent in going from L/a = 6 to L/a = 16. This
illustrates that it is possible to fool oneself into believing that fixed point behavior is occuring, when
it is actually just a very small one-loop coefficient and relative weak coupling that is causing the
phenomenon. This will always happen near the top of the conformal window, since the one-loop
coefficient is about to change sign, and is hence close to zero.

3.5 SU(2) with two adjoint flavors

This theory is often referred to as “minimal walking technicolor (MWTC)” in the literature. It
has been extensively studied and here we only mention recent work. A recent Schrödinger func-
tional study finds a zero of the discrete β function [44]. The Monte Carlo renormalization group
method finds a small anomalous mass dimension γ < 0.6, but is unable to reach firm conclusions
on the bare step scaling function [45–47]. Finite size scaling from spectral data finds γ = 0.50(26),
compatible with other studies, and again too small for phenomenological purposes [48]. Analysis
of the Dirac eigenmode spectrum leads to similar conclusions for γ and the most accurate value
to date, γ = 0.371(20), Ref. [49]. In [50, 51] we found that using the Creutz ratio definition of
the running coupling, the theory either had no running or backward running in the vicinity of bare
coupling β = 2.25. Other recent work includes nonperturbative improvement [52]. All results on
γ are summarized in Table 2. In all cases it is too small for phenomenological purposes.
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Method γ

SF [53] 0.05 < γ < 0.56

SF [44] 0.31±0.06

Perturbative 4-loop [54, 55] 0.500

Schwinger-Dyson [55] 0.653

All-orders hypothesis [56] 0.46

MCRG [47] −0.6 < γ < 0.6

FSS [57] 0.05 < γ < 0.20

FSS [58] 0.22±0.06

FSS [48] 0.50±0.26

Dirac eigenvalues [49] 0.371±0.020

Table 2: Summary of all MWTC results for the anomalous mass dimension. SF is Schrödinger functional,
MCRG is Monte Carlo renormalization group and FSS is finite size scaling.

3.6 SU(4) with two flavors of decuplet fermions

This theory was studied using Schrödinger functional methods in [18]. Similar to SU(2) and
SU(3) with two-index symmetric representation fermions, a zero in the discrete beta function is
found. The conclusion reached by the authors is that the theory flows to an infrared fixed point.

3.7 Two-dimensional O(3) σ model as a walking theory

With a θ term, the O(3) σ model can be continuously deformed away from a conformal theory
in the infrared. Thus it is like a theory with N f flavors where N f is a continuous parameter. This
analogy was first suggested in [59], and subsequently studied in detail in [60]. The approximate
zero of the β function at a nonzero coupling can be seen in Fig. 4.

4. Conclusion

Subsequent experimental work at the Large Hadron Collider will determine the JPC quantum
numbers of the new boson that has been discovered. Greater certainty regarding rates in various
decay channels will be obtained as integrated luminosity is accumulated and analysis techniques
refined. A detailed understanding of these properties will give us greater guidance in answering
the question of whether or not this boson originates from a theory with compositeness at a higher
scale. This in turn will tell us whether or not conformal theories have anything to do with TeV
scale physics. In the meantime, speculations will continue about this possibility and lattice studies
of models inspired by this scenario will be on-going. We are gradually learning more about con-
formal and nearly conformal theories arising from new strong interactions, but it has proven to be
a challenging endeavor because of the many subtleties involved. Whether or not nature “chooses”
to make use of conformal or nearly conformal theories at energies greater than the electroweak
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Figure 4: β function in the two-dimensional O(3) model with various values of θ . It can be seen that for θ

near the critical value, the walking behavior sets in, where there is an approximate zero of the β function at
a nonzero coupling.

scale, they are nevertheless quite interesting from a theoretical perspective. To a certain degree,
lattice gauge theory has proven its worth in that it has given in some cases strong indications about
which theories lie within the conformal window and what is the range of values that occurs for the
exponent γ . Given the short time period over which these studies have been conducted, and the
modest resources that have been devoted to them, it is a triumph of this first principles approach
to strongly coupled quantum field theory that it has been able to make a number of compelling
statements. However, it is clear that more work is needed in order to reconcile the various studies
near the bottom of the conformal window. This is most obvious in the case of SU(3) lattice gauge
theory with twelve fundamental flavors of fermions. A better understanding of the strengths and
weaknesses of various methods is needed, so that a consensus can be reached about how much
weight to give the different results. Many of the groups have only performed preliminary studies
on relatively small volumes, and so it is important for them to refine and improve their work before
we attempt to draw final conclusions. It will hopefully be the case that we will also see innovations
over the next few years that will lead to more definitive answers in the theories that we are studying.
It is hoped that more results with phenomenological implications will be obtained as time goes on.
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