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1. Introduction

One of the most fundamental question in nuclear physics is how nuclear physics itself emerges
from the underlying theory, Quantum Chromodynamics (QCD). To answer this question, nuclear
(and hadronic) forces are expected to play a vital role. They correspond to a particular representa-
tion of hadronic S-matrices, or scattering phase shifts, and serve as the most fundamental quantities
in nuclear physics. Traditionally, nuclear potentials are phenomenologically determined using ex-
perimental two-nucleon (2N) scattering phase shifts as inputs. Recent “realistic two-nuclear forces
(2NF)” can reproduce several thousands of 2N scattering data with χ2/dof ∼ 1 with 30-40 fitting
parameters. The major challenge imposed on nuclear and particle physics is to determine hadronic
potentials in the first-principles method of QCD, such as lattice QCD simulations.

Once hadronic forces are determined directly from QCD, various applications to nuclear and
astrophysical phenomena are in order. Some examples include the structures and reactions of
atomic nuclei, and the equation of state (EoS) of nuclear matter. The latter is relevant not only
to nuclear saturation but also to the physics of neutron stars and supernova explosions. Note,
however, that not only 2NF but also other hadronic forces play an important role. For instance,
detailed information of hyperon-nucleon (YN) and hyperon-hyperon (YY) interactions is necessary
to understand the structure of neutron stars with hyperon core. They are essential inputs to the
strangeness physics conducted in the J-PARC experiments as well. Three-nucleon forces (3NF)
are other quantities which have vital roles in modern nuclear physics and astrophysics. They have
an impact on binding energies of light nuclei, nuclear EoS and the maximum mass of neutron
stars. Recently, the effect of 3NF on properties of neutron-rich nuclei, which would be relevant to
supernova nucleosynthesis, is also recognized. Since experimental information for YN, YY forces
and 3NF are quite limited, lattice QCD predictions are highly awaited.

Traditional approach to obtain hadronic interactions in lattice QCD is the Lüscher’s finite
volume method [1]. It can connect the energy of the two-particle system in a finite lattice box to
the elastic scattering phase shift. Lattice QCD studies for nuclear physics in this approach are given
in Refs. [2 – 13]. In principle, it is also possible to calculate the tower of 2N energy spectra on the
lattice and obtain the phase shifts at the corresponding energies, which may be converted to nuclear
forces. In practice, however, the computations of energy spectra are usually limited only for a few
excited states at most, making potentials out of reach of lattice simulations. One may consider
the effective field theory (EFT) approach to ease this problem, while the results could suffer from
uncertainties of EFT in baryon sector.

To overcome this problem, a new approach to hadronic interactions in lattice QCD, now called
the HAL QCD method, has been proposed recently [14, 15]. Utilizing the Nambu-Bethe-Salpeter
(NBS) wave function on the lattice, a potential is extracted through the corresponding Schrödinger
equation. Since the information of phase shift is embedded in the NBS wave function at the asymp-
totic (non-interacting) region, it is guaranteed that the obtained potential is faithful to the phase shift
by construction. Resultant (parity-even) 2NF in this approach are found to have desirable features
such as attractive wells at long and medium distances and central repulsive cores at short distance.
The method has been successfully applied to more general hadronic interactions [16 – 30]. See
Refs. [15, 31] for recent reviews.

Up to now, lattice simulations for multi-baryon systems have been carried out at rather heavy
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quark masses, while ultimate objective is to perform simulations at the physical point with infinite
volume extrapolation and continuum extrapolation. Proceeding toward this goal, we have to meet
two major challenges. The first one is the so-called signal to noise (S/N) issue. Actually, it is
well known that S/N is ruined exponentially for lighter pion mass, larger volume and/or larger
baryon number in the system [32]. The second challenge is the computational cost of the multi-
baryon correlators, namely, the cost of the contractions [33]. Since the cost grows factorially ×
exponentially for a larger baryon number A in the system, it becomes enormous for systems with
A > 2. In this report, we present a recent breakthrough for each of these issues [26, 33].

This report is organized as follows. We first give a brief review of the HAL QCD method in
Sec. 2. In Sec. 3, we explain the major challenges of (i) S/N issue and (ii) computational cost issue
in lattice simulations for multi-baryon systems, and recent breakthroughs for these issues are given.
We present the results of lattice numerical simulations for nuclear forces (Sec. 4), hyperon forces
(Sec. 5) and three-nucleon forces (Sec. 6). In Sec. 7, we review the results from the traditional
Lüscher’s method. Comparisons between different groups/approaches are given, and open issues
to be resolved are addressed. Sec. 8 is devoted to conclusions and outlook.

2. Formalism

We explain the HAL QCD method by considering the 2N potential as an illustration. We
consider the (equal-time) NBS wave function in the center-of-mass frame,

φW
2N(~r)≡ 〈0|N(~r,0)N(~0,0)|2N,W 〉in, (2.1)

where N is the nucleon operator and |2N,W 〉in denotes the asymptotic in-state of the 2N system at

the total energy of W = 2
√

k2 +m2
N with the nucleon mass mN and the relative momentum k ≡ |~k|.

For simplicity, we omit other quantum numbers such as spinor/flavor indices. For the purpose of
clarification, we here consider the elastic region, W < Wth = 2mN +mπ , while the method can be
extended above inelastic threshold [21, 34]. The most important property of the NBS wave function
is that it has a desirable asymptotic behavior [1, 15, 35 – 37],

φW
2N(~r) ∝

sin(kr− lπ/2+δW
l )

kr
, r ≡ |~r| → ∞, (2.2)

where δW
l is the scattering phase shift with the orbital angular momentum l. Exploiting this feature,

we define the (non-local) 2N potential, U2N(~r,~r′), through the following Schrödinger equation,

H0φW
2N(~r)+

∫
d~r′U2N(~r,~r′)φW

2N(~r
′) = EW

2NφW
2N(~r), (2.3)

where H0 = −∇2/(2µ) and EW
2N = k2/(2µ) with the reduced mass µ = mN/2. It is evident that

U2N defined in this way is faithful to the phase shift by construction.
Another important property is that, while U2N could be energy-dependent in general, it is

possible to construct U2N so that it becomes energy-independent [15, 31, 34]. The outline of the
proof can be given as follows. We first introduce a norm kernel NWi,Wj ≡

∫
d~rφWi

2N(~r)φ
W j
2N (~r) for

Wi,Wj < Wth, and define N −1 so that it is an inverse of the linearly-independent (sub-)space of
N . We then consider the potential given by

U2N(~r,~r′) = ∑
Wi,W j<Wth

(EWi
2N −H0)φWi

2N(~r)N
−1

Wi,W j
φW j

2N (~r′). (2.4)
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It is evident that this (trivially energy-independent) potential satisfies the Schrödinger equation
(2.3) for all W <Wth. It is also possible to show that one can construct energy-independent potential
even above inelastic threshold [34]. This “existence proof” of energy-independent potential plays
an essential role in the HAL QCD method.

Several remarks are in order. First, a potential itself is not an observable and is not unique.
It depends on the definition of NBS wave functions, e.g., the choice of the nucleon operator N.
One can also consider another form of U2N instead of Eq. (2.4). Recall, however, that physical
observables calculated from different potentials, such as phase shifts, are unique by construction.
Therefore, while there exists a “scheme” dependence in a potential, it is not a problematic am-
biguity. Rather, it is a freedom at our disposal, analog to the freedom to choose a “scheme” in
perturbative calculations. Recall also that modern nuclear calculations often take advantage of the
freedom to define the potential [38, 39]. Second, in practical lattice calculations, it is difficult
to handle the non-locality of the potential directly, since Eq. (2.4) requires NBS wave functions
at all energies below Wth. To proceed, we employ the derivative expansion of the potential [40],
U2N(~r,~r′) =

[
VC(r)+VT (r)S12 +VLS(r)~L ·~S+O(∇2)

]
δ (~r−~r′), where VC, VT and VLS are the cen-

tral, tensor and spin-orbit potentials, respectively, with the tensor operator S12. In this way, we can
determine the potentials order by order with a realistic number of NBS wave functions determined
on the lattice. In Ref. [23], the convergence of the derivative expansion is examined in parity-even
channel, and it is shown that the leading terms, VC and VT , dominate the potential at low energies.

Finally, let us address several advantages of the approach based on the potential. The first
point is that it is a convenient framework to understand the physics. One of the examples is given
in Sec. 5, where we discuss the origin of repulsive core from the viewpoint of Pauli exclusion
principle. A potential is also a useful tool to study many-body systems, since various many-body
techniques have been developed in nuclear physics based on potentials. This could serve as an
alternative approach to dense systems, for which direct lattice QCD simulations are difficult due
to the sign problem. Another advantage is that a potential is a localized object, and thus the finite
volume artifact is better under control. Actually, once a potential is obtained in a finite lattice box,
we can solve the Schrödinger equation in infinite volume. Last but not least, it is possible to extend
the HAL QCD method so that the ground state saturation is not required. This point is a significant
advantage over the traditional Lüscher’s method, and will be more elaborated in the next section.

3. Challenges toward lattice simulations with realistic setup
3.1 The signal to noise issue

In order to study nuclear physics from lattice QCD, we ultimately have to perform simulations
at the physical point with sufficiently large volumes. Toward this direction, a major challenge that
lies ahead is the so-called S/N issue. This issue arises since lattice simulations usually rely on
the ground state saturation, which is in principle achieved by taking an infinitely large Euclidean
time separation in the correlation function of concern. For instance, the NBS wave function of the
ground state of the 2N system, φW0

2N (~r), is extracted from the four-point correlator as

G2N(~r, t − t0) ≡ 1
L3 ∑

~R

〈0|(N(~R+~r)N(~R))(t) (N′N′)(t0)|0〉 −−→
t�t0

AW0
2NφW0

2N e−W0(t−t0), (3.1)

φW0
2N (~r) = 〈0|N(~r)N(~0)|2N,W0〉in, AW0

2N =in 〈2N,W0|(N′N′)|0〉, (3.2)
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where W0 denotes the energy of the ground state, N (N′) the nucleon operator in the sink (source).
In the practical lattice calculation, however, it is notoriously difficult to achieve the ground state
saturation for multi-baryon systems. In fact, for the correlation function of A-nucleon systems, the
S/N becomes [32] S/N ∼ exp [−A(mN −3mπ/2)(t − t0)] for t � t0, where mπ is the pion mass. To
make matters worse, there exists another problem for multi-baryon systems on the lattice, i.e., the
energy splitting between the ground state and excited (scattering) states becomes (too) smaller for
larger lattice volume. For instance, the minimum splitting of the 2N system in a lattice box with
a spacial size of L is ∆E ' ~p2

min/mN = (2π)2/(mNL2). If we want to carry out simulations with
L ∼ 10 fm at the physical point, ∆E ∼ 15 MeV and thus t/a � 100 may be required with a lattice
spacing of a ∼ 0.1 fm. While one may employ techniques such as diagonalization of correlation
function matrix to ameliorate this problem, this remains a serious issue as the volume gets larger.

In Ref. [26], a novel approach to resolve this issue is proposed, by extending the HAL QCD
method. The essential point is that the (elastic) scattering states with different energies on the
lattice are governed by the same potential, since an “energy-independent” (non-local) potential is
utilized in the HAL QCD method. With this realization, one can construct the method in which an
potential is extracted without relying on the ground state saturation. More specifically, we introduce
an imaginary-time NBS wave function defined by ψ2N(~r, t) ≡ G2N(~r, t)/e−2mNt , and consider the
time-dependent Schrödinger equation,

H0ψ2N(~r, t)+
∫

d~r′U2N(~r,~r′)ψ2N(~r′, t) =
(
− ∂

∂ t
+

1
4mN

∂ 2

∂ t2

)
ψ2N(~r, t). (3.3)

It is easy to see that Eq. (3.3) is consistent with Eq. (2.3), even when there exist contributions from
excited states in ψ2N(~r, t). Therefore, in this “time-dependent HAL QCD method”, the ground state
saturation is not required any more as far as contaminations from states above inelastic threshold
are suppressed. (For extension of the time-dependent HAL QCD method above inelastic threshold,
see Ref. [34]). The effectiveness of this new method have been examined in explicit numerical
simulations as well. For 2N systems [26] and I = 2 ππ system [29], it is confirmed that reliable
potentials and phase shifts can be extracted even with the presence of excite state contributions.

3.2 The computational cost issue

Another major challenge in multi-baryon systems on the lattice is the computational cost of the
correlation functions. In particular, it is well known that the cost of the contraction is exceptionally
enormous for larger baryon number A, since (i) the number of quark permutations (Wick contrac-
tions) grows factorially with A and (ii) the contraction of color/spinor degrees of freedom (DoF)
becomes exponentially large for large A. While there has been significant progress toward reducing
this computational cost [6, 14, 15, 18, 27, 41], it continues to remain the most time-consuming part
of the calculation, particularly for A > 2.

On this issue, we recently developed a novel algorithm, called “unified contraction algorithm,”
which achieves a drastic reduction of the computational cost [33]. Essential idea is to consider the
Wick contractions and the color/spinor contractions simultaneously. In fact, if the quarks of the
same flavor have the same space-time smearing function at the sink and/or source, a permutation
of quark operators is equivalent to a permutation of color and spinor indices of the corresponding
quark. Since color/spinor indices are dummy indices in the color/spin contractions, we can carry
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Figure 1: Parity-even 2NF in 1S0 and 3S1 −3 D1

channels obtained on the lattice at mπ = 0.70 GeV.
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Figure 2: The obtained phase shift in 1S0 channel
in the laboratory frame, with experimental data [26].

out full permutations (i.e., Wick contractions) in advance of the lattice simulation. This procedure
amounts to preparing a unified index list for Wick and color/spinor contractions. If there exists any
redundancy and/or cancellation among contributions in the original contraction, they are automati-
cally consolidated when constructing the unified index list, thus significant speedup is achieved.

The method is rather general and may be applied to, e.g., the straightforward algorithm, its
extension with the determinant algorithm [41] and the block algorithm (see Ref. [33] for these
definitions). The last one, in which the baryon block is constructed at this sink, is particularly useful
to achieve a large overlap with the state of interest and also to calculate the NBS wave functions.
Explicit study [33] shows that a significant reduction in the computational cost is achieved, e.g.,
by a factor of 192 for 3H and 3He nuclei, a factor of 20736 for the 4He nucleus and a factor of
O(1011) for the 8Be nucleus without assuming isospin symmetry. A further reduction is possible
by exploiting isospin symmetry, and/or interchange symmetries associated with sink baryons, if
such symmetries exist. This algorithm is also useful to study YN, YY forces, where the calculation
of coupled channel correlators require considerable computational resources.

4. Two-nucleon forces

4.1 Central and tensor forces in parity-even channel

We present the results for parity-even 2NF in 1S0 and 3S1 −3 D1 channels, which corre-
sponds to “dineutron” and “deuteron” channels, respectively. We determine the potentials up
to the fist order in the derivative expansion, namely, a central force in 1S0 channel and central
and tensor forces in 3S1 −3 D1 channel. Quenched QCD [14, 15] and full QCD [26, 31] stud-
ies have been performed, and the results from the latter are presented in this report. We em-
ploy N f = 2+ 1 clover fermion configurations generated by PACS-CS Collaboration [42]. The
lattice spacing is a ' 0.091 fm and the lattice size of V = L3 × T = 323 × 64 corresponds to
(2.9 fm)3 box in physical spacial size. For quark masses, we take three hopping parameters at
the unitary point as κud = 0.13700,0.13727,0.13754 for u, d quark masses, and κs = 0.13640
for s quark mass. The hadron masses at each κud correspond to mπ ' 701,570,411 MeV and
mN ' 1584,1412,1215 MeV, respectively. For a nucleon operator, N, we employ the standard op-
erator, N(x) = εabc(qT

a (x)Cγ5qb(x))qc(x), at both sink and source, and wall quark source is used
with Coulomb gauge fixing.

In Fig. 1, we plot the results for the central potential in 1S0 channel and the central and tensor
potentials in 3S1 −3 D1 channel obtained at mπ = 0.70 GeV. In the latter, the central and tensor
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Figure 3: Parity-odd 2NF in 3P0, 3P1 and 3P2 −3 F2 channels obtained on the lattice at mπ = 1.1 GeV. Left,
middle, and right figures show central, tensor and spin-orbit forces, respectively [31].

potentials are extracted from the coupled channel Schrödinger equation between S-wave and D-
wave components of the NBS wave function. The obtained potentials reproduce the qualitative
features of the phenomenological potentials, namely, attractive wells at long and medium distances,
central repulsive cores at short distance and negative tensor force.

To obtain the results for physical observables, we fit the potential with a multi-Gaussian func-
tion, and solve the Schrödinger equation in infinite volume. We find that both of dineutron and
deuteron are not bound. In Fig. 2, we show the results for the scattering phase shift in 1S0 channel
at mπ = 0.70 GeV. A qualitative feature of the experimental data is well reproduced, though the
strength is weaker, most likely due to the heavy pion mass. The scattering length obtained from the
derivative of the phase shift at k = 0 becomes a(1S0) = limk→0 tanδ (k)/k = 1.6(1.1) fm, which is
compared to the experimental value aexp(1S0)' 20 fm.

4.2 Central, tensor and spin-orbit forces in parity-odd channel

Nuclear forces in parity-odd channels are important not only in P-wave 2N scattering, but also
in many-nucleon systems. In addition, spin-orbit forces attract a great deal of interest recently,
since those in 3P2 channel are considered to be relevant in superfluidity in neutron stars. They are
also partly responsible for the magic numbers of nuclei in the nuclear shell model.

The lattice QCD study for parity-odd 2NF is more involved than the study of parity-even
2NF, since non-zero relative momentum has to be injected in the system. We employ a nucleon
source operator with a momentum, N′ = ∑~x1,~x2,~x3 εabc(qT

a (~x1)Cγ5qb(~x2))qc(~x3) f (~x3) with f (~x) =
exp[±2πixk/L], k = 1,2,3. We consider NBS wave functions in JP = A−

1 ,T
−

1 ,T−
2 channels in the

cubic group, which correspond to 3P0, 3P1, 3P2 −3 F2 in the continuum limit.
Numerical calculations are performed by employing N f = 2 dynamical configurations with

mean field improved clover fermion and renormalization-group improved gauge action generated
by CP-PACS Collaboration [43]. The lattice spacing is a−1 = 1.269(14) GeV and the lattice size
of V = L3 ×T = 163 × 32 corresponds to (2.5 fm)3 box in physical spacial size. For u, d quark
masses, we take the hopping parameter at the unitary point as κud = 0.13750, which corresponds
to mπ = 1.1 GeV and mN = 2.2 GeV.

We determine the central (VC), tensor (VT ) and spin-orbit potentials (VLS) from the (coupled)
Schrödinger equations in JP = A−

1 ,T
−

1 ,T−
2 channels. Shown in Fig. 3 are the preliminary results

for these potentials from lattice QCD. Their features qualitatively agree with those in phenomeno-
logical potentials, as (i) VC has repulsive core at short distance, (ii) VT is positive and very small,
and (iii) VLS is large and negative at short distance.
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Figure 4: The 2B potentials in 27 (upper left), 8s (upper middle), 1 (upper right), 10 (lower left), 10 (lower
middle) and 8a (lower right) flavor representation, obtained at Mps = 469 MeV on the lattice [24].

5. Hyperon forces

Hyperon is a new DoF in nuclear physics and their interactions are crucial to understand hy-
pernuclei and the structure of neutron star cores. They are also essential inputs to explore exotic
multi-quark states such as the H-dibaryon. While YN/YY scattering experiments are difficult be-
cause of the short life-time of hyperons, lattice QCD is suitable framework to determine hyperon
interactions. The first calculations for hyperon potentials are performed in Ref. [16] for pΞ0 system
in quenched simulations. In this report, we present the latest results for generalized baryon forces in
N f = 3 full QCD simulations [17, 20, 24], and the results in N f = 2+1 full QCD simulations [19].

5.1 Generalized baryon forces in the flavor SU(3) limit and bound H-dibaryon

In order to grab the insight of physics, it is convenient to consider the generalized baryon forces
(NN, YN, YY forces) in the flavor SU(3) limit. In this limit, two-baryon (2B) systems composed
of spin 1/2 flavor-octet baryon can be classified by irreducible representation of SU(3) as

8⊗8 = 27⊕8s ⊕1︸ ︷︷ ︸
symmetric

⊕10⊕10⊕8a︸ ︷︷ ︸
anti−symmetric

, (5.1)

where "symmetric" and "anti-symmetric" denotes the symmetry under the exchange of two baryons.
For the system with S-wave, Pauli principle imposes 27, 8s and 1 to be spin-singlet (1S0), while
10, 10 and 8a to be spin-triplet (3S1 −3 D1). We note that, 2NF corresponds to either 27 or 10, and
other 4 representations are purely unique interactions with the presence of hyperons.

We generate N f = 3 dynamical configurations with O(a) improved clover fermion action
and renormalization-group improved gauge action on a 323 × 32 lattice at a ' 0.12 fm, and at
five values of quark hopping parameters, which corresponds to (Mps,MB) = (1170.9(7), 2274(2)),
(1015(1), 2030(2)), (837(1), 1748(1)), (673(1), 1485(2)) and (468.6(7), 1161(2)) in unit of MeV,
where Mps and MB denote the masses of the octet pseudoscalar (PS) meson and the octet baryon,
respectively. In the calculation of the NBS wave functions, we construct a 2B operator with appro-
priate Clebsch-Gordan coefficients to respect the irreducible representation of interest.
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Figure 5: The coupled channel potentials of the ΛΛ−NΞ−ΣΣ system at (mπ , mK) ' (875, 916) MeV [31].
(Left) The diagonal parts of the potential matrix. (Right) The off-diagonal parts of the potential matrix.

In Fig. 4, we show the obtained potentials at Mps = 469 MeV for each flavor representa-
tion [24]. The upper panels show central forces in the spin-singlet channel, while the lower panels
give central and tensor forces in the spin-triplet channel. What is noteworthy is that potentials are
highly dependent on the flavor representation. In particular, compared to 2NF sectors, V (27)

C and

V (10)
C,T , V (10)

C has a stronger repulsive core and a weaker attractive pocket. Furthermore, V (8s)
C has

a very strong repulsive core among all 6 channels, while V (8a)
C has a very weak repulsive core. In

contrast to all other cases, V (1)
C has attraction at short distances instead of repulsion. These features

are found to be well explained from the viewpoint of the Pauli exclusion principle in the quark
level [44]. Such agreements between the lattice data and the quark model suggest that the quark
Pauli exclusion plays an essential role for the repulsive core in 2B systems.

The potential in 1 channel is particularly interesting, since the existence of an exotic H-
dibaryon was proposed in this channel, and lattice QCD results show the existence of an attractive
core. We fit the flavor singlet potential and solve the Schrödinger equation in infinite volume. It
turns out that, at each quark mass, there is only one bound state with binding energy of 20–50
MeV, with smaller binding energy for smaller quark mass. On the other hand, there appears no
bound state in the 27-plet channel (“dineutron”) or the 10-plet channel ("deuteron" ) in the present
range of quark masses. We note that, since the binding energy of H-dibaryon is comparable to
the splitting between physical hyperon masses and not so sensitive to quark mass, there may be
a possibility of weakly bound or resonant H-dibaryon even in the real world. To make a definite
conclusion, however, the ΛΛ−NΞ−ΣΣ coupled channel analysis is necessary for H-dibaryon in
the N f = 2+1 lattice QCD simulations, as will be discussed in the next section.

5.2 Coupled channel hyperon forces with flavor SU(3) breaking

In the realistic world, SU(3) symmetry is broken due to the heavy strange quark mass, and it
is often necessary to study the coupled channel systems above the inelastic threshold. The HAL
QCD method can be extended so that the potentials above the inelastic threshold are extracted. For
instance, in the case of ΛΛ−NΞ−ΣΣ system, we consider nine NBS wave functions φWi

X (~r) =
〈0|BX1(~r,0)BX2(~0,0)|Wi〉in with X(= X1X2) = ΛΛ, NΞ or ΣΣ and three different energies Wi (i =
0,1,2). We consider the coupled channel Schrödinger equation with these NBS wave functions, and
extract the energy-independent (non-local) 3×3 potential matrix. For details, see Refs. [21, 31, 34].

We employ N f = 2+1 dynamical clover fermion configurations generated by CP-PACS/JLQCD
Collaborations [45] on a 163 ×32 lattice at a ' 0.12 fm. We calculate three quark mass setup, cor-
responding to mπ = 0.66, 0.75, 0.88 GeV with s-quark mass fixed at roughly physical value. We
perform a systematic study for S = −1,−2,−3,−4 channels, which cover all 2B systems com-

9



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
2
)
0
0
9

Nuclear physics from lattice simulations Takumi Doi

posed of two octet baryons. (For a single channel study for ΛN and ΣN potentials on a finer and
larger volume by PACS-CS configurations, see Ref. [31].) In this report, we present the results in
S =−2, I = 0 channel, i.e., ΛΛ−NΞ−ΣΣ system, which is relevant to the H-dibaryon.

In Fig. 5, we show the coupled channel potential matrix obtained at (mπ , mK , mN , mΛ, mΣ, mΞ)
= (875(1), 916(1), 1806(3), 1835(3), 1841(3), 1867(2)) MeV [31]. All diagonal components of the
potential matrix have a repulsion at short distance, while the strength of the repulsion in each chan-
nel varies reflecting properties of its main component in the irreducible representation of SU(3) f .
In particular, the ΣΣ potential has the strongest repulsive core of these three components. Note also
that off-diagonal parts of the potential matrix satisfy the hermiticity within statistical errors. We fit
the potentials and solve the coupled channel Schrödinger equation, and find that the H-dibaryon is
still bound in this setup. The results at smaller quark masses with PACS-CS configurations [42],
however, show that H-dibaryon tends to become a resonance with its energy moving from ΛΛ
threshold toward NΞ threshold in our setup. In order to obtain the definite conclusion on the fate
of the H-dibaryon, it is necessary to further reduce the quark mass toward the physical point.

6. Three-Nucleon Forces

Three-nucleon forces (3NF) are considered to play an important role in various phenom-
ena, e.g., the binding energies of light nuclei, deuteron-proton elastic scattering, the properties
of neutron-rich nuclei and nuclear EoS at high density relevant to the physics of neutron stars.
Together with experimental studies [46], lattice QCD is the most desirable way to determine 3NF.

The HAL QCD method can be extended to determine 3NF by considering the NBS wave
functions of three-nucleon (3N). We introduce the imaginary-time NBS wave function of the 3N,
ψ3N(~r,~ρ, t), defined by the six-point correlator as

G3N(~r,~ρ, t − t0) ≡ 1
L3 ∑

~R

〈0|(N(~x1)N(~x2)N(~x3))(t) (N ′N′N′)(t0)|0〉, (6.1)

ψ3N(~r,~ρ, t − t0) ≡ G3N(~r,~ρ , t − t0)/e−3mN(t−t0) (6.2)

where ~R ≡ (~x1+~x2+~x3)/3,~r ≡~x1−~x2,~ρ ≡~x3−(~x1+~x2)/2 are the Jacobi coordinates. Under the
non-relativistic approximation, existence of energy-independent potential for 3N systems can be
shown in a manner analogous to Sec. 2 [27, 34], and we can employ the time-dependent HAL QCD
method to extract the 3NF without relying on the ground state saturation. To proceed, employing
the derivative expansion of the potentials, the NBS wave function can be converted to the potentials
through the following Schrödinger equation,[

− 1
2µr

∇2
r −

1
2µρ

∇2
ρ +∑

i< j
V2N(~ri j)+V3NF(~r,~ρ)

]
ψ3N(~r,~ρ , t) =− ∂

∂ t
ψ3N(~r,~ρ , t), (6.3)

where V2N(~ri j) with~ri j ≡~xi −~x j denotes 2NF between (i, j)-pair, V3NF(~r,~ρ) the 3NF, µr = mN/2,
µρ = 2mN/3 the reduced masses. If we calculate ψ3N(~r,~ρ, t), and if all V2N(~ri j) are obtained by
(separate) lattice calculations for genuine 2N systems, we can extract V3NF(~r,~ρ) through Eq. (6.3).

In our first exploratory study of 3NF, we consider the total 3N quantum numbers of (I,JP) =

(1/2,1/2+), the triton channel. We also restrict the geometry of the 3N. More specifically, we
consider the “linear setup”with ~ρ =~0, with which 3N are aligned linearly with equal spacings of
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Figure 7: The genuine 3NF in the triton channel
with the linear setup, determined at each sink time.

r2 ≡ |~r|/2. In this setup, the third nucleon is attached to (1,2)-nucleon pair with only S-wave, and
the wave function is completely spanned by only three bases, which can be labeled by the quantum
numbers of (1,2)-pair as 1S0, 3S1, 3D1. In this way, the Schrödinger equation can be simplified to
the 3×3 coupled channel equations with the bases of ψ1S0

, ψ3S1
, ψ3D1

.
While the computational cost of the NBS wave function is enormous, it is drastically reduced

(by a factor of 192) using the “unified contraction algorithm” in Sec. 3.2 [33]. We here employ the
non-relativistic limit operator for the nucleon at the source, N′ = εabc(qT

a Cγ5Pnrqb)Pnrqc with Pnr =

(1+ γ4)/2, to maximize the gain by the unified contraction algorithm. For the nucleon operator
at the sink, which defines the NBS wave function, we employ the standard nucleon operator as in
2NF study, N = εabc(qT

a Cγ5qb)qc, so that 2NF and 3NF are determined on the same footing.
In order to extract the genuine 3NF, it is generally necessary to subtract the contributions from

both of parity-even and parity-odd 2NF from the total potential in the 3N system. However, parity-
odd 2NF on the lattice generally suffer from larger statistical errors due to the momentum injection
in the system, which could obscure the signal of 3NF. Therefore, we consider the following channel,
ψS ≡ 1√

6

[
− p↑n↑n↓+ p↑n↓n↑− n↑n↓p↑+ n↓n↑p↑+ n↑p↑n↓− n↓p↑n↑

]
, which is anti-symmetric in

spin/isospin spaces for any 2N-pair. Combined with the Pauli-principle, it is guaranteed that any
2N-pair couples with even parity only, and we can extract 3NF without referring to parity-odd 2NF.

Numerical simulations are performed by employing N f = 2 clover fermion configurations
generated by CP-PACS Collaboration [43], at the lattice spacing of a−1 = 1.269(14) GeV, the
lattice size of V = L3 × T = 163 × 32, and a quark mass corresponding to mπ = 1.1 GeV and
mN = 2.2 GeV. They are the same configurations employed in Sec. 4.2.

In Fig. 6, we plot the radial part of each wave function of ψS = (−ψ1S0
+ψ3S1

)/
√

2, ψM ≡
(ψ1S0

+ψ3S1
)/
√

2 and ψ3D1
obtained at (t − t0)/a = 8, which are normalized by the central value

of ψS(r2 = 0). In Fig. 7, we plot the preliminary results for the genuine 3NF obtained at (t − t0)/a
= 7.5, 8.0, 8.5, where results from different sink times are found to be consistent with each
other. Here, 3NF are effectively represented in a scalar-isoscalar functional form, as is often em-
ployed for phenomenological short-range 3NF. These results correspond to the update of those in
Ref. [27], where the method is improved from original (time-independent) HAL QCD method to
time-dependent one, so that systematic errors associated with excited states are suppressed.

In Fig. 7, an indication of repulsive 3NF is observed at the short distance, while 3NF are found
to be small at the long distance, in accordance with the suppression of two-pion exchange (2πE)
3NF by the heavy pion. Note that a repulsive short-range 3NF is phenomenologically required to
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Figure 8: Compilation of ∆E in terms of m2
π , for dineutron (1S0) (upper left), deuteron (3S1(−3D1)) (upper

right), 3H (=3He) (lower left) and 4He (lower right) channels. Note that some results do not take V → ∞.

explain the properties of high density matter. The origin of the short-range 3NF may be attributed to
the quark and gluon dynamics directly. As discussed in Sec. 5.1, the short-range cores in 2B forces
are well explained by the quark Pauli exclusion. In this context, it is intuitive to expect that the 3N
system is subject to extra Pauli repulsion effect, which could be an origin of the observed short-
range repulsive 3NF. It is also of interest that the analyses with operator product expansion [47]
show that 3NF has a universal repulsive core at short distance.

7. Approaches from the Lüscher’s method

In the last few years, a number of lattice studies have been performed by extracting the energy
of the system from the temporal correlator, together with the Lüscher’s finite volume method.

Yamazaki et al. [7] performed quenched simulations with the clover fermion at a = 0.128
fm, (mπ ,mN) = (0.80, 1.62) GeV with the spacial lattice size of L = 3.1,6.1,12.3 fm. Single-
state analyses were performed with two quark smearing parameters. After the infinite volume
extrapolation, they observed that both of dineutron and deuteron are bound. They also studied
2×2 diagonalization method with L = 4.1,6.1 fm. The result for the 1st excited state is consistent
with the existence of a bound state, where the 2N operator was chosen so that the ground state
energy is consistent with single-state analysis. They also performed the study of helium nuclei,
using single-state analysis with two smearing parameters. Both of 3He (=3H) and 4He are found to
be bound [6]. Recently, they repeated the study with N f = 2+1 full QCD simulations, with clover
fermion at a = 0.09 fm, (mπ ,mN) = (0.51, 1.32) GeV with L = 2.9–5.8 fm. Single-state analysis
shows that all of dineutron, deuteron, 3He and 4He are bound [8].

NPLQCD Collaboration performed N f = 2+ 1 clover fermion simulations on an anisotropic
lattice at as ∼ 0.123 fm (as/at ∼ 3.5), (mπ ,mN) = (0.39, 1.16) GeV with L = 2.5 fm, and found
positive (repulsive) energy shifts in both of dineutron and deuteron channels [5], as was observed
in their mixed action study [3]. Hyperon interactions were studied as well, and all are found to
be repulsive except for ΛΛ interaction [5]. A feasibility study for three-baryon systems were also
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performed [4, 9]. On the contrary, their study including larger volumes (L = 2.0, 2.5, 2.9, 3.9
fm) [11] found the suggestion of bound dineutron and deuteron where only the results from largest
two volumes were used. They also found that H-dibaryon, Ξ−Ξ− and nΣ−(1S0) are bound [10 –
12]. Recently, they performed the simulation1 in flavor SU(3) limit with clover fermion at a∼ 0.145
fm (isotropic), (mPS,mB) = (0.81, 1.64) GeV with L = 3.4, 4.5, 6.7 fm. They obtained many bound
(hyper-) nuclei, including dineutron, deuteron, flavor singlet H-dibaryon and 3H, 4He nuclei [13].

The results of ∆E, which is the energy measured from the (fully-)breakup threshold, for
dineutron (1S0), deuteron (3S1 −3 D1), 3H, 4He are summarized in Fig. 8. While there exist
differences in lattice setup, we sometimes observe unexpected discrepancies between different
results. For instance, at mπ ' 0.8 GeV, both of dineutron and deuteron are unbound in HAL
QCD [24], while both are deeply bound in NPLQCD [13]. The binding energy of flavor singlet H-
dibaryon is also quite different between HAL QCD (∆E = −37.8(3.1)(4.2) MeV) and NPLQCD
(∆E = −74.6(3.3)(3.3)(0.8) MeV). Since both studies employ N f = 3 full QCD with a similar
cut-off, these discrepancies are open issues to be clarified, which may be related to the difference
in the analysis method. The results from Yamazaki et al. [6, 7] at mπ = 0.8 GeV are also quite
different from NPLQCD [13], although both groups employ basically the same analysis method. It
remains to be investigated whether the difference of simulation setup (namely, N f = 0 vs N f = 3)
can explain such large discrepancies. Careful investigations on systematic errors should be exam-
ined, e.g., excited state contaminations in the case of the traditional Lüscher’s method. Note that, in
the case of the time-dependent HAL QCD method, the ground state saturation is no more required,
while the convergence of derivative expansion should be examined for each channel of concern.

Finally, we note that a study for the decuplet baryons has been also performed. In Ref. [49],
lattice simulations at mπ = 0.39 GeV shows that ΩΩ interaction in J = 0 is weakly repulsive with
the scattering length of a =−0.16(22) fm, while J = 2 is highly repulsive.

8. Conclusions and Outlook

We have presented lattice QCD activities for nuclear physics, particularly the progress toward
the determination of baryonic forces using Nambu-Bethe-Salpeter wave functions. Major chal-
lenges for multi-baryon systems on the lattice have been addressed, (i) signal to noise (S/N) issue
and (ii) computational cost issue. Recent breakthroughs on these issues have been given: The S/N
issue has been found to be avoided by the time-dependent HAL QCD method, in which energy-
independent (non-local) potentials can be extracted without relying on the ground state saturation.
For the latter issue, a novel “unified contraction algorithm” has been developed, by which compu-
tational cost is drastically reduced. The lattice QCD results for nuclear forces, hyperon forces and
three-nucleon forces have been presented, and physical insights such as the origin of repulsive core
have been discussed. We have also shown recent results from the traditional Lüscher’s method,
and open issues to be resolved have been addressed. Since the current simulations employ rather
heavy quark masses, it is crucial to go to lighter quark masses. While there may appear various
challenges toward the physical point simulations [50], it is becoming within reach to determine
realistic nuclear forces including few-baryon forces from first-principles lattice simulations, which
will play an ultimate role in nuclear physics and astrophysics.

1Their algorithm for the computation of correlators [48] is nothing but the “unified contraction algorithm” which
was already proposed in Ref. [33].
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