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1. Introduction

In order to study the chiral limit in lattice QCD with Wilson Fermions, it is essential to un-
derstand the phase structure at nonzero lattice spacing. Since the continuum limit,a→ 0, and the
chiral limit, m→ 0, do not commute, lattice spacing effects can induce new phase transitions which
have no analogue in the continuum. These new phase structures are known as the Aoki phase [1]
and the Sharpe-Singleton scenario [2]. The presence of new phase structures due to the lattice arti-
facts may at first appear to be a severe drawback for the application of Wilson fermions, however,
these lattice artifacts can be turned to one’s favor: The Aoki phase is reached through a second
order phase transition and just outside the Aoki phase the pions have dispersion relations which
resemble those of almost massless quarks in the continuum.

Because the Wilson term breaks chiral symmetry the effects of the lattice spacing lead to new
terms in chiral perturbation theory. This extended low energy theory is know as Wilson chiral
perturbation theory. The precise form of the terms was worked out in [2, 3, 4] and at ordera2

involves three new low energy constants, which encode the severity of chiral symmetry breaking
by the lattice artifacts. Recently a large number of new analytic results concerning chiral dynamics
with Wilson fermions have been obtained from Wilson chiral perturbation theory by working from
the perspective of the Wilson Dirac eigenvalues [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. The aim in
this review is to give an introduction to the new understanding which the results has brought about
rather than on the technical details.

We will focus on three of the most important new insights which follow from the results
namely,1) that the Sharpe-Singleton scenario is only realized in unquenched simulations,2) that
thea/

√
V scaling of the smallest eigenvalues of the Hermitian WilsonDirac operator, observed on

the lattice [17, 18, 19], is a good sign, and finally3) that the results offer a new way to measure the
additional low energy constants of Wilson chiral perturbation theory.

Two new results are also included in this review.First, we determine the meta-stable region
around the Sharpe-Singleton 1st order phase transition, and secondwe show that the sampling of
the individual sectors is essential in order to determine the vacuum structure in the Aoki phase.

2. Wilson Chiral Perturbation Theory in the ε-regime

The Wilson term in the Wilson Dirac operator

DW =
1
2

γµ(∇µ + ∇∗
µ)− ar

2
∇µ∇∗

µ (2.1)

breaks chiral symmetry. Therefore, the shortest length scale a also affects the physics of longest
length scale 1/mπ . This effect is captured by Wilson chiral perturbation theory [2, 3, 4], for which
we now give a focused review.

As always in chiral perturbation theory it is essential to set up a counting scheme. Here we
will work in the ε-regime where theV → ∞ limit is tied to the chiral and continuum limit such that

mV, ζV, and a2V (2.2)
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are kept fixed and of order unity (ζ is the axial mass). The partition function of Wilson chiral
perturbation theory at leading order then reduces to a groupintegral [20, 21]

ZNf (m,ζ ;a) =

∫

SU(Nf )
dU eS[U ], (2.3)

where the action is

S =
m
2

ΣVTr(U +U†)+
ζ
2

ΣVTr(U −U†) (2.4)

−a2VW6[Tr
(

U +U†)]2−a2VW7[Tr
(

U −U†)]2−a2VW8Tr(U2 +U†2
).

The convention for the low energy constantsW6, W7 andW8 is that of [5, 7]. In [4] these constants
are denoted respectively by−W6

′, −W7
′ and−W8

′.
As in the continuum [22] it is most useful to consider Wilson chiral perturbation theory in

sectors with fixed indexν , such that [5, 7]

Zν
Nf

(m,ζ ;a) =
∫

U(Nf )
dU detνU eS[U ], (2.5)

where we obviously have

ZNf (m,ζ ;a) = ∑
ν

Zν
Nf

(m,ζ ;a). (2.6)

The index defined in the above decomposition of the partitionfunction is the index of the
Wilson Dirac operator [5, 7]

ν = ∑
k

sign(〈k|γ5|k〉), (2.7)

where|k〉 is the eigenvector associated with thek’th real mode of the Wilson Dirac operator in the
physical branch. We will make explicit use of this index in section 7 where we discuss the micro-
scopic spectral density. In the first sections we will work atmean field level where the dependence
on the index is suppressed.

From the action in Eq. (2.4) it is clear that the partition function in theε-regime of Wilson
chiral perturbation theory only depends on the dimensionless scaling variables

m̂= mVΣ, ζ̂ = ζVΣ and â2
i = a2VWi . (2.8)

The mean field limit corresponds to the saddle point approximation to the group integral in the limit
where these dimensionless numbers are all much larger than unity.

3. Aoki phase and Sharpe-Singleton scenario

The form of the ordera2 terms in Wilson chiral perturbation theory are uniquely determined
by the way in which the Wilson term breaks chiral symmetry. Each of the three new terms comes
with a new low energy constant, the value of which is not fixed by the flavor symmetries. The sign
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Figure 1: The mean field potential for the orientation of the vacuum. When cos(θ ) = ±1 the lattice
simulation is in the normal phase with the standard chiral condensate.Left W8 +2W6 > 0: The Aoki phase
develops when the minimum of the potential is between -1 and 1. Right W8 + 2W6 < 0: For the Sharpe-
Singleton scenario the minimum is always at -1 or 1. The additional meta-stable minimum at cos(θ ) =

−1 (red curve) becomes degenerate with the minimum at cos(θ ) = 1 for m = 0 (blue curve) resulting in
the 1st order Sharpe-Singleton phase transition. The parameters chosen for the plots are ˆm= 10,5,0 and
8(â2

8 +2â2
6) = ±4.

of these three additional low energy constants, however, isdetermined by theγ5-Hermiticity of the
Wilson Dirac operator

γ5DWγ5 = D†
W. (3.1)

Only for

W6 < 0, W7 < 0 and W8 > 0 (3.2)

does the Wilson chiral Lagrangian describe lattice QCD withaγ5-Hermitian Wislon Dirac operator
[5, 7, 23, 13]. As we shall now demonstrate these signs give vital information on how the Aoki
phase and the Sharpe-Singleton scenario are realized. To show this let us first work out the phase
structure of lattice QCD with Wilson fermions at smallm anda using Wilson chiral perturbation
theory at mean field level. With the mean field ansatz for the orientation of the Goldstone field [2]
(here and below we focus on the case of two mass degenerate flavors)

U = cos(θ)+ i sin(θ)σ3 (3.3)

we find the mean field action

SMF = 2m̂cos(θ)−4â2
8(2cos2(θ)−1)−16â2

6 cos2(θ). (3.4)

This effective potential for cos(θ) is plotted in figure 1 for the two casesW8 +2W6 > 0 (l.h.s.) and
W8 + 2W6 < 0 (r.h.s.). In the first case the orientation, as given by cos(θ), continuously moves
from 1 to -1 as a function of the quark mass. This is the Aoki phase [1]. In the second case, where
W8 +2W6 < 0, the orientation jumps from 1 to -1 atm= 0. This is the first order Sharpe-Singleton
phase transition [2].
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Figure 2: The phase diagram for lattice QCD with Wilson fermions in the(8(W8 + 2W6)a2,m)-plane.
For positive values of 8a2(W8 + 2W6) the Aoki phase dominates with the 2nd order phase transitionat
|m| = 8a2(W8 + 2W6) and associated Goldstone modes for smaller values of|m|. With negative values of
8a2(W8 + 2W6) the Sharpe-Singleton scenario dominates with the 1st orderphase transition atm = 0 and
spinodal lines at|m| = |8a2(W8 +2W6)|. The meta-stable region is hence between the dashed blue lines.

The pion masses for|m|Σ > 8(W8 +2W6)a2 are given by the order-a2 corrected GOR-relation
[2]

m2
πF2

π
2

= |m|Σ−8(W8 +2W6)a
2. (3.5)

Approaching the Aoki-phase (whereW8 + 2W6 > 0) the squared mass of the pions goes to zero
linearly with the quark mass. If we absorb the ordera2-correction into the quark mass this behavior
of the pion masses is just like in the continuum. On the contrary in the Sharpe-Singleton scenario
(whereW8 + 2W6 < 0) the pion mass is always positive. See the rightmost panelsof figure 3 and
figure 5 respectively.

Since the Sharpe-Singleton scenario involves a first order phase transition it is natural to ask:
What is the meta-stable region? The answer is readily seen from Eq. (3.4) or graphically from
the r.h.s. of figure 1. The spinodal line occurs when themaximumof the effective potential enters
between−1 and 1. That is, at exactly the same quark mass as the Aoki phase would have occurred
for the opposite sign ofW8 +2W6. This is illustrated in figure 2.

4. A puzzle

The above analysis shows that either the Aoki phase or the Sharpe-Singleton scenario will
dominate if we take the chiral limit prior to the continuum limit. Which of the two is realized,
depends on whetherW8 is more positive than 2W6 is negative and hence on the details of the specific
lattice simulation in question. This analysis was extendedto the quenched case in [24] where it was
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Figure 3: The physical branch of the spectral density of the Wilson Dirac operator (left) the chiral conden-
sate (middle) and the pion mass (right). The vertical dashedlines mark the support of the eigenvalue density
of the Wilson Dirac operator. The location is at|Re[z]|Σ = 8(W8 + 2W6)a2. The Aoki phase occours when
the quark mass is between the two dashed lines (W8+2W6 > 0). In addition there is one massive mode inside
the Aoki phase.

argued that the Aoki phase and the Sharpe-Singleton scenario potentially both should be realizable
also in quenched simulations. On the lattice, however, quenched lattice simulations consistently
observe the Aoki phase [25, 27, 26, 28], while in unquenched simulations both the Aoki and the
Sharpe-Singleton scenario are observed [29, 30, 31, 17, 18,19, 32, 33, 34, 35, 36, 37, 38, 39]. As
we now show this puzzle has a natural solution when we consider the problem from the perspective
of the Wilson Dirac eigenvalues.

5. Spectrum of the Wilson Dirac operator for W6 = W7 = 0

We now derive the spectral density of the Wilson Dirac operator. Let us start with the case
whereW6 = W7 = 0. In this caseW8 +2W6 > 0, sinceW8 > 0 by theγ5-Hermiticity of the Wilson
Dirac operator, and we have the Aoki phase.

Because of theγ5-Hermiticity the eigenvalues of the Wilson Dirac operator are either purely
real or come in complex conjugate pairs [40]. For a scatter plot of the eigenvalues, see for example
[41]. In order to derive the spectral density of the Wilson Dirac operator in the complex plane

ρc,Nf (z,z
∗) = 〈∑

i

δ 2(λW
i −z)〉Nf (5.1)

from Wilson chiral perturbation theory we therefore need toextend the partition function into a
replicated generating functional withp additional pairs of conjugate quarks with masses ˆzandẑ∗,

Zν
Nf +2p(ẑ, ẑ

∗,m̂; âi) = 〈∏
i

(λW
i −m)∏

i
(λW

i −z)p((λW
i )∗−z∗)p〉. (5.2)

The eigenvalue density of the Wilson Dirac operator in the complex plane is then obtained as

ρν
c,Nf

(ẑ, ẑ∗,m̂; âi) = ∂ẑ∗ lim
p→0

∂ẑ
1
p

logZν
Nf +2p(ẑ, ẑ

∗,m̂; âi). (5.3)

6
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Figure 4: Left: The microscopic eigenvalue density of the Wilson Dirac operator in the complex plane (in
the sector withν = 0 for Nf = 0 anda

√
W8V = 0.75,W6 = W7 = 0) andRight: the microscopic eigenvalue

density of the real eigenvalues of the Wilson Dirac operator(in the sectors withν = 1,2,3 for Nf = 0
anda

√
W8V = 0.2, W6 = W7 = 0). The exponential fall-off of the eigenvalue density is essential to avoid

exceptional configurations.

The trick is now to use the low energy effective theory, ie. Wilson chiral perturbation theory, to
compute the replicated generating functional and thereby obtain the density. For an introduction to
the use of the replica method in chiral perturbation theory,see [42].

The low energy limit of the replicated generating functional is given by Wilson chiral pertur-
bation theory with the mass matrix

M = diag(m̂Nf , ẑp, ẑ
∗
p), (5.4)

where the subscript on the quark masses refers to the number of times the specific mass appears. In
the mean field limit the dependence on the number,p, of replica flavors is trivial forW6 = W7 = 0,
and one simply obtains (we use the notation ˆz= x̂+ iŷ)

ρMF
c,Nf =2(x̂,m̂; â8) = θ(8â2

8−|x̂|). (5.5)

Note that the eigenvalue density is independent of the imaginary part of the eigenvalue, hence it
forms a strip along the imaginary axis of width 8 ˆa2

8. The Aoki-phase sets in when the quark mass
enters the eigenvalue strip, as in figure 3.

The microscopic limit of both the eigenvalue density ofDW in the complex plane and on the
real axis was worked out in [5, 7, 10, 13], see figure 4. The exact way in which the real eigenvalues
are distributed shows at which value of the quark mass the simulations are safe from exceptional
configurations.

6. The realization of the Sharpe-Singleton scenario: The solution to the puzzle

7
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Figure 5: The realization of the Sharpe-Singleton scenario (W8 + 2W6 < 0). The red cross marks the size
of the quark masstop: the mass is positive andbelow: the mass is negative. As the quark mass changes
sign the strip of eigenvalues jumps across the origin and consequently the chiral condensate has a first order
discontinuity atm= 0, cf. the middle panels. Since the quark mass never reaches the eigenvalue density the
pions remain massive even atm= 0. See the rightmost figures. Clearly this scenario is only possible in the
unquenched theory where the eigenvalue density can depend on the quark mass.

Let us now compute the effect ofW6 on the spectral density ofDW in the mean field limit. To
do so it is useful first to linearize the square in theW6 term of the replicated generating functional
with a Gaussian integral over a fluctuating massy6. This leads to [13]

ρν
c,Nf

(ẑ, ẑ∗,m̂; â6, â8) =
1

Zν
Nf

(m̂; â6, â8)

∫

[dy6] Zν
Nf

(m̂−y6; â8)ρν
c,Nf

(ẑ−y6, ẑ
∗−y6,m̂−y6; â8),

(6.1)

where we used the notation[dy6] = dy6/(4
√

π |â6|)exp(−y2
6/(16|â2

6|)). This expresses the eigen-
value density ofDW in the complex plane atW6 6= 0 in terms of the eigenvalue density withW6 = 0.

At the mean field level forNf = 2, using Eq. (5.5), we get

ρMF
c,Nf =2(x̂,m̂; â6, â8) =

1

ZMF
2 (m̂; â6, â8)

∫

dy6 e−y2
6/16|â2

6|ZMF
2 (m̂−y6; â8)θ(8â2

8−|x̂−y6|), (6.2)

where

ZMF
2 (m̂; â6, â8) = e2m̂+16|â2

6|−4â2
8 +e−2m̂+16|â2

6|−4â2
8 (6.3)

+θ(8(â2
8 +2â2

6)−|m̂|)em̂2/8(â2
8−2|â2

6|)+4â2
8.

8
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This saddle point structure of the two flavor partition function leads to

ρMF
c,Nf =2(x̂,m̂; â6, â8) =

1

ZMF
2 (m̂; â6, â8)

(6.4)

×
{

e2m̂+16|â2
6|−4â2

8θ(8â2
8−|x̂+16|â6|2|)

+e−2m̂+16|â2
6|−4â2

8θ(8â2
8−|x̂−16|â6|2|)

+θ(8(â2
8 +2â2

6)−|m̂|)θ
(

8â2
8−

∣

∣

∣

∣

x̂+
2|â6|2m̂

(â2
8−2|â6|2)

∣

∣

∣

∣

)

em̂2/8(â2
8−2|â2

6|)+4â2
8

}

.

Since we seek to understand the realization of the Sharpe-Singleton scenario let us considerW8 +

2W6 < 0. The density in this case is shown in figure 5. As the quark mass changes sign the strip of
eigenvalues jump from one side of the origin to the opposite side and this causes the 1st order jump
of the chiral condensate. This explains how the Sharpe-Singleton scenario is realized in terms of
the strong mass dependence of the unquenched eigenvalue density.

In the quenched caseon the contrary the eigenvalue density is independent of thequark mass
since the fermion determinant is absent in the measure. The quark mass in the quenched case,
therefore, necessarily passes through the eigenvalue density and this leads to the standard Aoki
phase,independent of the sign ofW8 + 2W6. This explains why the Aoki phase is observed con-
sistently in quenched simulations and thus solves the puzzle of section 4. One can also compute
the quenched chiral condensate directly from the graded version of the partition function in Wilson
chiral perturbation theory and reach the same conclusion. This is illustrated in figure 6. The anal-
ysis of [24] reached the conclusion that the Sharpe-Sharpe-Singleton scenario could be realized
in quenched simulations because the bound on the signs of theWi ’s due toγ5-Hermiticity had not
been understood at the time.

The meta-stable region surrounding the 1st order Sharpe-Singleton phase transition (see figure
2) can also be observed in the eigenvalue density. For 0< mΣ < |W8+2W6|a2 andW8+2W6 < 0 the
meta-stable minimum ofZMF

2 introduces a local minimum of they6 integral in Eq. (6.4). This local
minimum offers the possibility for the strip of eigenvaluesto temporarily jump to the opposite side
of the origin thus inducing a fluctuating sign of the chiral condensate. Such fluctuations become
more frequent as the meta-stable and global minimum ofZMF

2 become almost degenerate, ie. asm
approaches zero. Thus the meta-stability of the eigenvaluedensity is completely consistent with
the meta-stability of the chiral condensate obtained directly from Eq. (3.4).

It is also instructive to consider the distance from the quark mass to the edge of the strip of
eigenvalues ofDW. From Eq. (6.4) we see that this distance is given by

|m|−8(W8 +2W6)a
2/Σ. (6.5)

This is exactly the combination which enters the right hand side of the order-a2 corrected GOR
relation, cf. Eq. (3.5). The distance from the quark mass to the edge of the strip of eigenvalues of
DW can therefore be thought of as the effective quark mass whichenters the standard continuum
form of the GOR relation.

In the Sharpe-Singleton scenario, ie. forW8 +2W6 < 0, the quark mass never reaches the strip
of eigenvalues ofDW. The minimal distance between the quark mass and the eigenvalues is given

9
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Figure 6: The Sharpe-Singleton first order phase transition is only realized in the unquenched theory.
Here we show the mass dependence of the microscopic chiral condensate for ˆa8 = 1 andâ6 = 0,0.5i andi
corresponding toW8 +2W6 > 0,W8 +2W6 = 0 andW8 +2W6 < 0, respectively.Left Nf = 2: The 1st order
Sharpe-Singleton phase transition develops with the increasingly negative value ofW6. Right Nf = 0: The
smooth behavior of the chiral condensate as a function of thequark mass characteristic of the Aoki phase is
present in the quenched theory even whenW8 +2W6 < 0.

by −8(W8 +2W6)a2 and hence the smallest value which the pion mass can reach is

mπ =
√

−16(W8 +2W6)a2/F2
π . (6.6)

This is of course exactly the same minimal value of the pion mass found in [2]. We now understand
how this minimum is linked to the behavior of the eigenvalue density in the unquenched theory.

7. Spectrum of the Hermitian Wilson Dirac operator

The γ5-Hermiticity of the Wilson Dirac operator makes it natural to introduce the Hermitian
Wilson Dirac operator,D5, defined by

D5 ≡ γ5(DW +m) . (7.1)

There is a close analogue of the Banks Casher relation [43] for the spectrum ofD5: The lattice
artifacts induce eigenvalues ofD5 with magnitude less than|m| and when these build up a density
at zero the Aoki phase is reached [44]. It is therefore essential to understand analytically the
dependence of the smallest eigenvalues of the Hermitian Wilson Dirac operator in order to study
chiral dynamics in simulations with Wilson fermions.

The first to consider the spectral density ofD5 from the perspective of Wilson chiral perturba-
tion theory was Sharpe [45]. By now a detailed analytic understanding of the effects the discretiza-
tion errors have on the spectrum ofD5 have been obtained [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16].
A plot of the spectral density is shown in figure 7. The plot shows the density in the sector with
ν = 1 and the index peak atm is clearly visible. Also the precise way the eigenvalues intrude into
the region between−mandmcan be observed.

10
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Figure 7: Red histogram: The spectral density of the Hermitian Wilson Dirac operatoron quenched
204 lattices in the sector withν = 1. The eigenvalues have been rescaled withΣV/a = 220. See [48] for
details about the simulations.Blue curve: The microscopic spectral density obtained from Wilson chiral
perturbation theory withNf = 0, ν = 1, m̂= 2.3 andâ6 = 0.06. Also shown is theblack curve obtained
from ordinary chiral perturbation theory witha = 0. The prime effect of the lattice artifacts forhai ≪ 1
is to smear the index-peak. This leads to thea/

√
V scaling of the width of the smallest eigenvalue of the

Hermitian Wilson Dirac operator reported in [17, 18].

Figure 8: The accumulated single eigenvalue distributions of the lowest eigenvalues of the Hermitian
Wilson Dirac operator. Plot adopted from [47].

The predictions also offer a new way to measure the low energyconstants of Wilson chiral
perturbation theory [16, 46, 47, 48]: The histogram in figure7 displays lattice data and the match
of the analytic prediction to the lattice data fixes the values of the low energy constants. We refer
to [48] for details.

One can also obtain the low energy constants from a fit of the analytic predictions for the
spectral density ofDW to lattice data. However, sinceD5 is Hermitian it is somewhat easier to
determine this spectrum numerically in lattice simulations. See also [49] for an alternative way to
measure theWi ’s.

8. Scaling with a/
√

V

In the simulations of [17, 18, 19] it was found that the width of the distribution of the smallest
eigenvalue ofD5 scales witha/

√
V. At first sight this may sound disturbing, since the Banks-

Casher relations [43, 44] suggests that the smallest eigenvalues should scale with 1/V. Hence one
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Figure 9: The accumulated eigenvalue density the Hermitian Wilson Dirac operator including all sectors.
Left: quenched lattice simulation from [50].Right: example of the analytic prediction from Wilson chiral
perturbation theory in theε regime withNf = 0. The parameters chosen for this example aremΣV = 3,
â8 = 0.2 andW6 = W7 = 0.

might fear that thea/
√

V-scaling is a sign of uncontrolled lattice artifacts, such as local defects not
described by Wilson chiral perturbation theory. On the contrary, thea/

√
V scaling is a good sign:

In the limit where ˆai ≪ 1 the smallest eigenvalues ofD5 should in fact scale precisely witha/
√

V
[5, 7]. For âi ≪ 1 the primary influence of the lattice artifacts is to smear the topological mode
into a peak aroundm of width a/

√
V, as shown in figure 7. This fact, obtained from Wilson chiral

perturbation theory, has been demonstrated explicitly in lattice quenched simulations [46, 47, 48].
See figures 7 and 8. Note that these lattice simulations were separated into sectors with fixed
index. The effect of the discretization error on the spectrum of D5 can also be studied without
the separation into sectors. In figure 9 the accumulated eigenvalue density including all sectors is
shown. The left hand plot is lattice data obtained in [50] while the right hand plot gives an example
of the analytic results. It would be most interesting to preform a systematic fit to the data including
the leading order corrections to the slope at largeλ 5 obtained in [16].

9. Alternative vacuum in the Aoki phase for Nf = 2

In [51] it was proposed that the additional condensate〈iūγ5u+ id̄γ5d〉 will take a nonzero
expectation value inside the Aoki phase along with the standard Aoki condensate〈iūγ5u− id̄γ5d〉.
This suggestion is particularly interesting since the presence of the additional condensate is in direct
contradiction with the results of Wilson chiral perturbation theory [52]. The additional condensate
〈iūγ5u+ id̄γ5d〉 is zero in theε-regime of Wilson chiral perturbation theory, Eq. (2.3), because
it is the v.e.v. of Tr(U −U†) which vanishes inSU(2) where TrU = TrU†. With fixed index,
however, the group average is extended toU(2) and Tr(U −U†) does not vanish trivially. The
behavior of〈iūγ5u+ id̄γ5d〉 at fixed index can be examined by explicit evaluation ofU(2) integral
Eq. (2.5) and differentiation w.r.t.ζ . One can also evaluate the squared condensate〈(iūγ5u+

id̄γ5d)2〉 at zero external sources as suggested in [53]. Again this is zero in SU(2) and nonzero
at fixed index. As should of course be true, one recovers the vanishing value of the additional
condensates within Wilson chiral perturbation theory, after a careful summation over all sectors
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with the appropriate partition functions as weights. In simulations, however, it can be very tricky
to control this sum over the sectors. Even a small error in thesampling of the sectors can lead
to a substantial error in the value of the additional condensates after summation over the sectors.
The summation over the sectors become particularly delicate in the Aoki region if the low energy
constantW7 is non-vanishing. The reason is that the term proportional to W7 is tantamount to a
Gaussian fluctuating source foriūγ5u+ id̄γ5d. In other words, Wilson chiral perturbation theory
predicts that it is essential to sample all the sectors with the correct weight in order to determine if
the additional condensate is present.

10. Conclusion

The approach to chiral dynamics with Wilsons fermions from the perspective of the eigen-
values of the Wilson Dirac operator has lead to several new insights. On the macroscopic level
it becomes clear that the Sharpe-Singleton scenario can only be realized in unquenched theories
and on the microscopic scale we learn that thea/

√
V scaling of the smallest eigenvalues of the

Hermitian Wilson Dirac operator is a sign that the simulation is very close to the continuum. On a
more technical but equally important level we now understand that the signs of the additional low
energy constants in Wilson chiral perturbation theory are fixed. Moreover, the new analytic results
offers a practical way to measure the additional low energy constants in lattice simulations. These
combined new insights can be most useful when we seek to minimize discretization errors in lattice
simulations with Wilson fermions. For example, to minimizeW8+2W6 it is useful to know that the
two contributions have opposite signs.

A control of the lattice artifacts becomes particularly important in studies of QCD with a larger
number of flavors: In a mean field approach the coefficient in front ofW6 andW7 scales withN2

f

compared to the linear scaling of theW8 term. This suggest that simulations with a larger number
of flavors should be more likely to end up in the Sharpe-Singleton scenario. Hence one is less likely
to be able to exploit the massless modes at the boundary of theAoki phase to mimic the chiral limit
for larger number of flavors.

Many aspects discussed in this review of chiral dynamics with Wilson fermions has a direct
analogue for staggered fermions. It would be interesting topursue this further. The necessary tools
are already available [54] and first results have appeared [55].
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