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We report on Monte Carlo simulations focused on elucidatingthe phase structure of aSU(2)

gauge theory containingN f Dirac fermion flavors transforming in the fundamental representation

of the group and interacting through an additional chirallyinvariant four fermion term. Pairs

of physical flavors are implemented using the two tastes present in a reduced staggered fermion

formulation of the theory with the Yukawa interactions necessary for generating the four fermion

term preserving the usual shift symmetries. We observe a crossover in the behavior of the chiral

condensate for strong four fermi coupling associated with the generation of a dynamical mass

for the fermions. At weak gauge coupling this crossover is consistent with the usual continuous

phase transition seen in the pure (ungauged) NJL model. However, if the gauge coupling is strong

enough to cause confinement we observe a much more rapid crossover in the chiral condensate

consistent with a first order phase transition
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1. Introduction

Elucidating the nature of the electroweak symmetry breaking sector of the Standard Model
(SM) is the main goal of the Large Hadron Collider currently running at CERN. It is widely be-
lieved that the simplest scenario involving a single scalar Higgs field is untenable due to the fine
tuning and triviality problems which arise in scalar field theories. One naturalsolution to these
problems can be found by assuming that the Higgs sector in the Standard Model arises as an
effective field theory describing the dynamics of a composite field arising from strongly bound
fermion-antifermion pairs. These models are generically called technicolor theories.

However, to obtain fermion masses in these scenarios requires additional model building, as
in extended technicolor models [1, 2, 3, 4] and models of top-condensation[5, 6, 7, 8]. In the latter
models four-fermion interactions drive the formation and condensation of ascalar top–anti-top
bound state which plays the role of the Higgs at low energies.

Our motivation in this paper is to study how the inclusion of such four fermion interactions
may influence the phase structure and low energy behavior of non-abelian gauge theories in general.
Specifically we have examined a model with both gauge interactions and a chirally invariant four
fermi interaction - a model known in the literature as the gauged NJL model [9].

The focus of the current work is to explore the phase diagram when fermions are charged
under a non-abelian gauge group. Indeed, arguments have been given in the continuum that the
gauged NJL model may exhibit different critical behavior at the boundary between the symmetric
and broken phases1 corresponding to the appearance of a line of new fixed points associatedwith a
mass anomalous dimension varying in the range 1< γµ < 2 [9, 10]. The evidence for this behavior
derives from calculations utilizing the ladder approximation in Landau gaugeto the Schwinger-
Dyson equations. A primary goal of the current study was to use lattice simulation to check the
validity of these conclusions and specifically to search for qualitatively newcritical behavior in the
gauged model as compared to the pure NJL theory. While we will present results that indicate that
the phase structure of the gauged NJL model is indeed different from pure NJL, we shall argue that
our results arenot consistent with the presence of any new fixed points in the theory.

In the work reported here and described in detail in [11] we have concentrated on the four flavor
theory corresponding to two copies of the basic Dirac doublet used in the lattice construction. The
four flavor theory is expected to be chirally broken and confining at zero four fermi coupling and
is free from sign problems for gauge groupSU(2). Understanding the effects of the four fermion
term in this theory can then serve as a benchmark for future studies of theories which, for zero
four fermi coupling, lie near or inside the conformal window. In the latter case the addition of
a four fermion term will break conformal invariance but in principle that breaking may be made
arbitrarily small by tuning the four fermi coupling. It is entirely possible that the phase diagrams of
such conformal or walking theories in the presence of four fermi terms mayexhibit very different
features than those seen for a confining gauge theory.

1Notice that the appearance of a true phase transition in the gauged NJL models depends on the approximation that
we can neglect the running of the gauge coupling
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2. Details of the model

We will consider a model which consists ofN f /2 doublets of gauged massless Dirac fermions
in the fundamental representation of anSU(2) gauge group and incorporating anSU(2)L×SU(2)R

chirally invariant four fermi interaction. The action for a single doublet takes the form

S =
∫

d4x ψ(i/∂ − /A)ψ −
G2

2N f
[(ψ̄ψ)2+(ψ̄iγ5τaψ)2]

−
1

2g2 Tr[FµνFµν ], (2.1)

where G is the four-fermi coupling,g the usual gauge coupling andτa,a = 1. . .3 are the generators
of theSU(2) flavour group.

This action may be discretized using the (reduced) staggered fermion formalism with the result

S = ∑
x,µ

χT (x) Uµ(x) χ(x+aµ) [ηµ(x)+G φ µ(x)ε(x)ξµ(x)]. (2.2)

whereηµ(x), ξµ(x) andε(x) are the usual staggered fermion phases,φ(x) = 1
16 ∑h φ(x− h) the

average of the scalar field over the hypercube [12, 13] and the gaugefield acting on the reduced
staggered fermions takes the form:

Uµ(x) =
1
2
[1+ ε(x)]Uµ(x)+

1
2
[1− ε(x)]U∗

µ(x). (2.3)

Clearly the theory is invariant under theU(1) symmetryχ(x) → eiαε(x)χ(x) which is to be
interpreted as theU(1) symmetry corresponding to fermion number. More interestingly it is also
invariant under certain shift symmetries given by

χ(x) → ξρ(x)χ(x+ρ), (2.4)

Uµ(x) → U∗
µ(x+ρ), (2.5)

φµ(x) → (−1)δµρ φµ(x+ρ). (2.6)

These shift symmetries correspond to adiscrete subgroup of the continuum axial flavor transfor-
mations which act on the matrix fieldΨ according to

Ψ → γ5Ψγρ (2.7)

Notice that no single site mass term is allowed in this model.

3. Numerical results

We have used the RHMC algorithm to simulate the lattice theory with a standard Wilsongauge
action being employed for the gauge fields. Upon integration over the basic fermion doublet we
obtain a Pfaffian Pf(M(U)) depending on the gauge field2. The required pseudofermion weight for
N f flavors is then Pf(M)N f /2. The pseudoreal character ofSU(2) allows us to show that the Pfaffian

2Note that the fermion operator appearing in eqn. 2.2 is antisymmetric
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is purely real and so we are guaranteed to have no sign problem if we usemultiples of four flavors

corresponding to a pseudofermion operator of the form(M†M)−
Nf
8 . The results in this paper are

devoted to the caseN f = 4. We have utilized a variety of lattice sizes: 44, 64, 84 and 83×16 and
a range of gauge couplings 1.8< β ≡ 4/g2 < 10.0. To determine where the pure gauge theory is

Figure 1: Polyakov loop vsβ at G = 0.1 for four flavours

strongly coupled and confining we have examined the average Polyakov line asβ varies holding the
four fermi coupling fixed atG = 0.1. This is shown in figure 1. We see a strong crossover between
a confining regime for smallβ to a deconfined regime at largeβ . The crossover coupling is volume
dependent and takes the value ofβc ∼ 2.4 for lattices of sizeL = 8. Forβ < 1.8 the plaquette drops
below 0.5 which we take as indicative of the presence of strong lattice spacing artifacts and so we
have confined our simulations to larger values ofβ . We have set the fermion mass to zero in all of
our work so that our lattice action possesses the series of exact chiral symmetries discussed earlier.

One of the primary observables used in this study is the chiral condensate which is computed
from the gauge invariant one link mass operator

χ(x)
(

Uµ(x)χ(x+ eµ)+U
†

µ (x− eµ)χ(x− eµ)
)

ε(x)ξµ(x) (3.1)

In Figure 2 we show a plot of the absolute value of the condensate at a variety of gauge
couplingsβ on 84 lattices. Notice the rather smooth transition between symmetric and broken
phases aroundG ∼ 0.9 for β = 10. This is consistent with earlier work using sixteen flavors of
naive fermion reported in [14] which identified a line of second order phase transitions in this
region of parameter space. It also agrees with the behavior seen in previous simulations using
conventional staggered quarks [15].

This behavior should be contrasted with the behavior of the condensate for strong gauge cou-
pling β ≤ 2.4. Here a very sharp transition can be seen reminiscent of a first orderphase transition.
In Figure 3 we highlight this by showing a plot of the condensate versus four fermi coupling at
the single gauge couplingβ = 2.0 for a range of different lattice sizes. The chiral condensate is
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Figure 2: 〈χχ〉 vs G for varyingβ for the 84 lattice withN f = 4.

Figure 3: 〈χχ〉 vs G at β = 2.0 for lattices 44, 64 and 84 with N f = 4.

now non-zero even for small four fermi coupling and shows no strong dependence on the volume
consistent with spontaneous chiral symmetry breaking in the pure gauge theory. However, it jumps
abruptly to much larger values when the four fermi coupling exceeds some critical value. This
crossover or transition is markedly discontinuous in character - reminiscent of a first order phase
transition. Indeed, while the position of the phase transition is only weakly volume dependent it
appears to get sharper with increasing volume.

What seems clear is that the second order transition seen in the pure NJL model is no longer
present when the gauge coupling is strong. In the next section we will argue that this is to be ex-
pected – in the gauged model one can no longer send the fermion mass to zeroby adjusting the
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four fermi coupling since it receives a contribution from gauge mediated chiral symmetry break-
ing. Indeed the measured one link chiral condensate operator is not an order parameter for such
a transition since we observe it to be non-zero for allG. Notice however that we see no sign that
this condensate depends on the gauge couplingβ in the confining regime at smallG. This is qual-
itatively different from the behavior of regular staggered quarks andwe attribute it to the fact that
the reduced formalism does not allow for a single site mass term or an exactcontinuous chiral
symmetry. Thus the spontaneous breaking of the residual discrete lattice chiral symmetry by gauge
interactions will not be signaled by a light Goldstone pion and the measured condensate will re-
ceive contributions only from massive states. The transition we observe isprobably best thought of
as a crossover phenomenon corresponding to the sudden onset of a new mechanism for dynamical
mass generation due to the strong four fermi interactions.

4. Summary

In this paper we have conducted numerical simulations of the gauged NJL model for four
flavors of Dirac fermion in the fundamental representation of theSU(2) gauge group. We have
employed a reduced staggered fermion discretization scheme which allows usto maintain an exact
subgroup of the continuum chiral symmetries.

We have examined the model for a variety of values for lattices size, gauge coupling, and
four fermi interaction strength. In the NJL limitβ → ∞ we find evidence for a continuous phase
transition forG ∼ 1 corresponding to the expected spontaneous breaking of chiral symmetry. How-
ever, for gauge couplings that generate a non-zero chiral condensate even forG = 0 this transition
or crossover appears much sharper and there is no evidence of critical fluctuations in the chiral
condensate.

Thus our results are consistent with the idea that the second order phasetransition which exists
in the pure NJL theory (β = ∞) survives at weak gauge coupling. However our results indicate that
any continuous transition ends if the gauge coupling becomes strong enough to cause confinement.
In this case we do however see evidence of additional dynamical mass generation for sufficiently
large four fermi coupling associated with an observed rapid crossoverin the chiral condensate and
a possible first order phase transition.

The fact that we find the condensate non-zero and constant for strong gauge coupling and
G < Gc shows that the chiral symmetry of the theory is already broken as expectedfor SU(2) with
N f = 4 flavors. This breaking of chiral symmetry due to the gauge interactions is accompanied by
the generation of a non-zero fermion mass even for small four fermi coupling. Notice that this type
of scenario is actually true of top quark condensate models in which the strong QCD interactions
are already expected to break chiral symmetry independent of a four fermion top quark operator.
The magnitude of this residual fermion mass isnot controlled by the four fermi coupling and cannot
to sent to zero by tuning the four fermi coupling - there can be no continuous phase transition in the
system as we increase the four fermi coupling - rather the condensate becomes strongly enhanced
for largeG.
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