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We report on Monte Carlo simulations focused on elucidatirgy phase structure of 8J(2)
gauge theory containing; Dirac fermion flavors transforming in the fundamental reprgation
of the group and interacting through an additional chirallyariant four fermion term. Pairs
of physical flavors are implemented using the two tastesepitas a reduced staggered fermion
formulation of the theory with the Yukawa interactions nesagy for generating the four fermion
term preserving the usual shift symmetries. We observessover in the behavior of the chiral
condensate for strong four fermi coupling associated withdeneration of a dynamical mass
for the fermions. At weak gauge coupling this crossover issisient with the usual continuous
phase transition seen in the pure (ungauged) NJL model. ¥Howniéthe gauge coupling is strong
enough to cause confinement we observe a much more rapicdeeoss the chiral condensate
consistent with a first order phase transition
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1. Introduction

Elucidating the nature of the electroweak symmetry breaking sector of thdeBtaModel
(SM) is the main goal of the Large Hadron Collider currently running at SERis widely be-
lieved that the simplest scenario involving a single scalar Higgs field is urleedab to the fine
tuning and triviality problems which arise in scalar field theories. One nasotation to these
problems can be found by assuming that the Higgs sector in the Standaml Ktigks as an
effective field theory describing the dynamics of a composite field arisimy Strongly bound
fermion-antifermion pairs. These models are generically called techniceori¢is.

However, to obtain fermion masses in these scenarios requires additiodel budlding, as
in extended technicolor models [1, 2, 3, 4] and models of top-condeng$&tién?, 8]. In the latter
models four-fermion interactions drive the formation and condensationscikar top—anti-top
bound state which plays the role of the Higgs at low energies.

Our motivation in this paper is to study how the inclusion of such four fermiomant®ns
may influence the phase structure and low energy behavior of non+abelige theories in general.
Specifically we have examined a model with both gauge interactions and Hycimvariant four
fermi interaction - a model known in the literature as the gauged NJL model [9]

The focus of the current work is to explore the phase diagram whemdes are charged
under a non-abelian gauge group. Indeed, arguments have beenigithe continuum that the
gauged NJL model may exhibit different critical behavior at the boyndatween the symmetric
and broken phaséscorresponding to the appearance of a line of new fixed points assowiieal
mass anomalous dimension varying in the rangey}, < 2 [9, 10]. The evidence for this behavior
derives from calculations utilizing the ladder approximation in Landau géugee Schwinger-
Dyson equations. A primary goal of the current study was to use lattice gionuta check the
validity of these conclusions and specifically to search for qualitativelyaréigal behavior in the
gauged model as compared to the pure NJL theory. While we will presarits¢hat indicate that
the phase structure of the gauged NJL model is indeed different froe\alL, we shall argue that
our results ar@ot consistent with the presence of any new fixed points in the theory.

In the work reported here and described in detail in [11] we have corated on the four flavor
theory corresponding to two copies of the basic Dirac doublet used inttlee leonstruction. The
four flavor theory is expected to be chirally broken and confining ai #eur fermi coupling and
is free from sign problems for gauge gro8g (2). Understanding the effects of the four fermion
term in this theory can then serve as a benchmark for future studies ofethedich, for zero
four fermi coupling, lie near or inside the conformal window. In the lattevectihe addition of
a four fermion term will break conformal invariance but in principle thaaking may be made
arbitrarily small by tuning the four fermi coupling. Itis entirely possible thatphase diagrams of
such conformal or walking theories in the presence of four fermi termsexiaipit very different
features than those seen for a confining gauge theory.

INotice that the appearance of a true phase transition in the gauged N&lsrdegends on the approximation that
we can neglect the running of the gauge coupling
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2. Details of the model

We will consider a model which consistsf /2 doublets of gauged massless Dirac fermions
in the fundamental representation of8u(2) gauge group and incorporating 8d (2). x U (2)r
chirally invariant four fermi interaction. The action for a single doubleetathe form

S= /d4xrpua Aw——[(ww + (Piyst?)?

292T [FuvFHY], (2.2)
where G is the four-fermi coupling,the usual gauge coupling am&, a=1...3 are the generators
of the U (2) flavour group.

This action may be discretized using the (reduced) staggered fermionifmuéth the result

S= XT(X) %u(x) X(X+ay) [Mu(X) + G @ (x) £(X) &u(X)]. (2.2)
R

wheren,(x), &u(x) ande(x) are the usual staggered fermion phaggs) = 162h @(x—h) the
average of the scalar field over the hypercube [12, 13] and the damldecting on the reduced
staggered fermions takes the form:

(%) = S[1+ £09] Up(0) + (1 €] Uj (). 2:3)

Clearly the theory is invariant under thi(1) symmetryx (x) — €%€X x(x) which is to be
interpreted as the (1) symmetry corresponding to fermion number. More interestingly it is also
invariant under certain shift symmetries given by

X(X) = &p(X) X (x+p), (2.4)
Up(X) = Uj(x+p), (2.5)
Qu(x) = (1) % qu(x+p). (2.6)

These shift symmetries correspond tdiscrete subgroup of the continuum axial flavor transfor-
mations which act on the matrix fiel according to

W— Wy, (2.7)

Notice that no single site mass term is allowed in this model.

3. Numerical results

We have used the RHMC algorithm to simulate the lattice theory with a standard Wasge
action being employed for the gauge fields. Upon integration over the kasidoh doublet we
obtain a Pfaffian RM(U)) depending on the gauge fildThe required pseudofermion weight for
Ns flavors is then RM)N*/2, The pseudoreal character®f (2) allows us to show that the Pfaffian

2Note that the fermion operator appearing in eqn. 2.2 is antisymmetric
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is purely real and so we are guaranteed to have no sign problem if weulSples of four flavors
corresponding to a pseudofermion operator of the f(MﬁM)*NTf. The results in this paper are
devoted to the cadds = 4. We have utilized a variety of lattice sizes, 4%, 8 and & x 16 and

a range of gauge couplings8l< 8 = 4/g° < 10.0. To determine where the pure gauge theory is
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Figure 1: Polyakov loop vg3 atG = 0.1 for four flavours

strongly coupled and confining we have examined the average Polyak@sfinvaries holding the
four fermi coupling fixed aG = 0.1. This is shown in figure 1. We see a strong crossover between
a confining regime for smaf to a deconfined regime at larffe The crossover coupling is volume
dependent and takes the valugBpt~ 2.4 for lattices of siz& = 8. Forf3 < 1.8 the plaquette drops
below 0.5 which we take as indicative of the presence of strong lattice gpautifacts and so we
have confined our simulations to larger valuegofe have set the fermion mass to zero in all of
our work so that our lattice action possesses the series of exact gmmaletries discussed earlier.

One of the primary observables used in this study is the chiral condenete i computed
from the gauge invariant one link mass operator

X (%) (Zu (X)X (x4 &) + 2 (X — 0) X (x— &) ) () & (X) (3.1)

In Figure 2 we show a plot of the absolute value of the condensate atetyvaf gauge
couplingsB on 8" lattices. Notice the rather smooth transition between symmetric and broken
phases aroun@ ~ 0.9 for 3 = 10. This is consistent with earlier work using sixteen flavors of
naive fermion reported in [14] which identified a line of second ordersphgansitions in this
region of parameter space. It also agrees with the behavior seen oygeimulations using
conventional staggered quarks [15].

This behavior should be contrasted with the behavior of the condensatiedng gauge cou-
pling B < 2.4. Here a very sharp transition can be seen reminiscent of a firstgnese transition.

In Figure 3 we highlight this by showing a plot of the condensate verawsfésmi coupling at
the single gauge couplinG = 2.0 for a range of different lattice sizes. The chiral condensate is
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now non-zero even for small four fermi coupling and shows no strapgddence on the volume
consistent with spontaneous chiral symmetry breaking in the pure gauarg.th®wever, it jumps
abruptly to much larger values when the four fermi coupling exceeds sdti@lcvalue. This

crossover or transition is markedly discontinuous in character - reminis€anfirst order phase
transition. Indeed, while the position of the phase transition is only weaklyn®ldependent it

Figure2: (xx) vsG for varying 3 for the & lattice withN¢ = 4.
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Figure3: (xx) vsG atp = 2.0 for lattices 4, 6* and & with N¢ = 4.

appears to get sharper with increasing volume.

What seems clear is that the second order transition seen in the pure NéLisod longer
present when the gauge coupling is strong. In the next section we wik dhat this is to be ex-
pected — in the gauged model one can no longer send the fermion mass twy zatjusting the
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four fermi coupling since it receives a contribution from gauge medidtg@dlcsymmetry break-
ing. Indeed the measured one link chiral condensate operator is notl@nparameter for such
a transition since we observe it to be non-zero foGaliNotice however that we see no sign that
this condensate depends on the gauge cougiimgthe confining regime at smaB. This is qual-
itatively different from the behavior of regular staggered quarksvemattribute it to the fact that
the reduced formalism does not allow for a single site mass term or an @ragtuous chiral
symmetry. Thus the spontaneous breaking of the residual discrete latti@esginmetry by gauge
interactions will not be signaled by a light Goldstone pion and the measurettosate will re-
ceive contributions only from massive states. The transition we obsepveliably best thought of
as a crossover phenomenon corresponding to the sudden onsetvehaetchanism for dynamical
mass generation due to the strong four fermi interactions.

4. Summary

In this paper we have conducted numerical simulations of the gauged NJeél ieodour
flavors of Dirac fermion in the fundamental representation of3Hé2) gauge group. We have
employed a reduced staggered fermion discretization scheme which allbavmamtain an exact
subgroup of the continuum chiral symmetries.

We have examined the model for a variety of values for lattices size, gaug#irng, and
four fermi interaction strength. In the NJL lim& — oo we find evidence for a continuous phase
transition forG ~ 1 corresponding to the expected spontaneous breaking of chiral syynkietv-
ever, for gauge couplings that generate a non-zero chiral coaideasen folG = 0 this transition
or crossover appears much sharper and there is no evidence ofl ¢hititaations in the chiral
condensate.

Thus our results are consistent with the idea that the second ordert@rasgon which exists
in the pure NJL theory§ = ) survives at weak gauge coupling. However our results indicate that
any continuous transition ends if the gauge coupling becomes strongtetwocause confinement.
In this case we do however see evidence of additional dynamical massatjen for sufficiently
large four fermi coupling associated with an observed rapid crosgotee chiral condensate and
a possible first order phase transition.

The fact that we find the condensate non-zero and constant fogsg@uge coupling and
G < G¢ shows that the chiral symmetry of the theory is already broken as exdect8d (2) with
N¢ = 4 flavors. This breaking of chiral symmetry due to the gauge interactiors@rganied by
the generation of a non-zero fermion mass even for small four fermiioguNotice that this type
of scenario is actually true of top quark condensate models in which thegfGD interactions
are already expected to break chiral symmetry independent of a foniofe top quark operator.
The magnitude of this residual fermion massascontrolled by the four fermi coupling and cannot
to sent to zero by tuning the four fermi coupling - there can be no contmplase transition in the
system as we increase the four fermi coupling - rather the condensatmés strongly enhanced
for largeG.



Four fermion operators Simon Catterall

Acknowledgments

The simulations were carried out using USQCD resources at Fermilaldednd J

References

[1] E. Eichten and K. Lane, “Dynamical breaking of weak imteion symmetries Phys.Lett.B, vol. 90,
no. 1-2, pp. 125 - 130, 1980.

[2] S. Dimopoulos and L. Susskind, “Mass without scalaljtlear Physics B, vol. 155, no. 1, pp. 237 —
252, 1979.

[3] N. D. Christensen and R. Shrock, “Extended technicolodeis with two ETC groupspPhys.Rev.,
vol. D74, p. 015004, 2006.

[4] T. Appelquist, M. Piai, and R. Shrock, “Fermion masseg anxing in extended technicolor models,”
Phys.Rev., vol. D69, p. 015002, 2004.

[5] V. Miransky, M. Tanabashi, and K. Yamawaki, “DynamicdeEtroweak Symmetry Breaking with
Large Anomalous Dimension and t Quark Condensdays.Lett., vol. B221, p. 177, 1989.

[6] V. Miransky, M. Tanabashi, and K. Yamawaki, “Is the t Qu&esponsible for the Mass of W and Z
Bosons?,Maod.Phys.Lett., vol. A4, p. 1043, 1989.

[7] W. A. Bardeen, C. T. Hill, and M. Lindner, “Minimal Dynarmmal Symmetry Breaking of the Standard
Model,” Phys.Rev., vol. D41, p. 1647, 1990.

[8] W. J. Marciano, “Dynamical Symmetry Breaking and the Tapark Mass,Phys.Rev., vol. D41,
p. 219, 1990.

[9] K. Yamawaki, “Dynamical symmetry breaking with largecamalous dimension,” 1996.
arXiv:hep-ph/9603293v1.

[10] H. S. Fukano and F. Sannino, “Conformal window of gaugmoties with four-fermion interactions
and ideal walking technicolorPhys. Rev. D, vol. 82, p. 035021, Aug 2010.

[11] S. Catterall, J. Hubisz, R. Galvez, D. Mehta and A. Vadan“Gauged non-abelian NJL models on
the lattice”,Phys. Rev. D86 2012, 034502.

[12] C. V. den Doel and J. Smit, “Dynamical symmetry breakimgwo flavor su(n) and so(n) lattice gauge
theories,’Nuclear Physics B, vol. 228, no. 1, pp. 122 — 144, 1983.

[13] W. Bock, J. Smit, and J. C. Vink, “Fermion-higgs modetiieduced staggered fermions,”
Phys.Lett.B, vol. 291, p. 297, 1992.

[14] A. Hasenfratz, “The equivalence of the top quark corsdém and the elementary higgs fielic.
Phys. B., vol. 365, pp. 79-97, Apr 1991.

[15] S. Hands and J. B. Kogut, “Logarithmic corrections te dguation of state in the SU(2) x SU(2)
Nambu-Jona-Lasinio modelNucl.Phys., vol. B520, pp. 382—408, 1998.



