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We present the report of the LatKMI collaboration on the lattice QCD simulation for the cases
of 4 and 8 flavors. The Nf=8 in particular is interesting from the model-building point of view:
The typical walking technicolor model with the large anomalous dimension is the so-called one-
family model (Farhi-Susskind model). Thus we explore the walking behavior in LQCD with 8
HISQ quarks by comparing with the 4-flavor case (in which the chiral symmetry is spontaneously
broken). We report preliminary results on the spectrum, analyzed through the chiral perturbation
theory and the finite-size hyperscaling, and we discuss the availability of the Nf=8 QCD to the
phenomenology.
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1. Introduction

The origin of mass is the most urgent issue of the particle physics today. One of the candidates
for the theory beyond the Standard Model is the walking technicolor which is the strongly coupled
gauge theory having a large anomalous dimension γm ≃ 1 and approximate scale invariance due to
the almost non-running (walking) coupling [1, 2]. The walking behavior is in fact realized in the
QCD with large number of (massless) flavors N f which possesses Caswell-Banks-Zaks infrared
fixed point (IRFP) [3] in the two-loop beta function. The exact IRFP would be washed out by the
dynamical generation of a quark mass m in the very infrared region µ < m for N f < Ncr

f , Ncr
f being

the critical number. However, for N f very close to Ncr
f , m could be much smaller than the intrinsic

scale Λ (≫ m), an analogue of ΛQCD, beyond which the coupling runs as the asymptotically free
theory, so that the coupling remains almost walking for the wide infrared region m < µ < Λ as a
remnant of the would-be IRFP. The case N f > Ncr

f is called conformal window, although confor-
mality is broken in the ultraviolet asymptotically free region beyond Λ.

Although the results from the two-loop and ladder approximation of Schwinger-Dyson equa-
tion analysis [4] are very suggestive, the relevant dynamics is obviously of non-perturbative nature,
we would need fully non-perturbative studies. Among others the lattice simulations developed in
the lattice QCD would be the most powerful tool for that purpose. The above two-loop and ladder
studies suggest that the walking theory if existed would be in between N f = 8 and N f = 12. The
N f = 8 in particular is interesting from the model-building point of view: The typical technicolor
model [5] is the so-called one-family model (Farhi-Susskind model) which has a one-family of the
colored techni-fermions (techni-quarks) and the uncolored one (techni-leptons) corresponding to
the each family of the SM quarks and leptons. Thus if the N f = 8 turns out to be a walking theory,
it would be a great message for the phenomenology to be tested by the on-going LHC.

Since the pioneering works on the lattice [6, 7] were carried out, a lot of groups have been
doing lattice studies nowadays. (See Refs. [8] for a review of recent developments.)

2. Simulation

2.1 Simulation details

In our simulation, we use the tree level Symanzik gauge action and the highly improved stag-
gered quark (HISQ) action [9] without the tadpole improvement and the mass correction in the Naik
term. It is expected that the flavor symmetry in the staggered fermion and the behavior towards the
continuum limit are improved by HISQ sction. We carried out the simulation by using the standard
Hybrid Monte-Carlo (HMC) algorithm. We computed the hadron spectrum as the global survey in
the parameter region and we obtained Mπ , Mρ , fπ and ⟨ψ̄ψ⟩ as the basic observable.

The simulation for N f = 4 is carried out at β (= 6/g2)= 3.6, 3.7 and 3.8 for various quark
masses on 123 × 16 and 163 × 24. We took over 1000 trajectories on the small lattice and about
600 trajectories on the large lattice in N f = 4 case. The simulation for N f = 8 is carried out at
β (= 6/g2)=3.6, 3.7, 3.8, 3.9 and 4.0 for various quark masses on (123 × 32,) 183 × 24, 243 × 32,
303 ×40 and 363 ×48 for various quark masses. We took about 800 trajectories on each size.

2



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
2
)
0
3
5

Exploring walking behavior in SU(3) gauge theory with 4 and 8 HISQ quarks Kei-ichi Nagai

2.2 Analysis methods

In this section, we show preliminary results of the chiral perturbation analysis (ChPT) and the
finite-size hyperscaling analysis in 4- and 8-flavor case.

If the system is in the chiral symmetry broken phase (χSB), physical quantities, MH , are
described by the chiral perturbation theory (ChPT); the polinomial behavior. In particular, about
the pion decay constant fπ = F + c1m f + c2m2

f + · · · . (Here we don’t discuss the existence of the
chiral log.) If F ̸= 0 in the above eq., it is regarded as the χSB.

On the other hand, if the system is in the conformal window, MH are described by the finite-

size hyperscaling relation (FSHS) [10] ; LMH = F (X) where X = Lm
1

1+γ
f . The γ in this equation is

defined as the anomalous mass-dimension. We carry out the hyperscaling analysis with our data of
MH = {Mπ , fπ ,Mρ} by the following fit function; LMH = c0 + c1X .

In the following, we analyse N f = 4 and 8 by these methods.

3. Spectrum

3.1 N f = 4

In this subsection, we analyze N f = 4 system by the ChPT and the finite-size hyperscaling
relation. The result of N f = 4 is shown in Fig. 1, in which the pion mass squared, the decay
constant and the chiral condensate are plotted on the panel from the left to the right respectively.
M2

π is proportional to m f . fπ and ⟨ψ̄ψ⟩ have the non zero value in the chiral limit. Thus, the N f = 4
has the property of the χSB phase and this is regarded as the signal of the chiral broken phase in
the dynamical case of lattice QCD. Also, if the FSHS test is applied to N f = 4 which is χSB phase
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Figure 1: In N f = 4 SU(3) gauge theory on 163 ×24 at β = 3.7; Left: M2
π as functions of m f , Center: fπ

as functions of m f , Right: ⟨ψ̄ψ⟩ as functions of m f . The blue-solid line in the left panel is the linear fit and
the lines in other panels are the quadratic fit.

(the ordinary QCD), what happens? The result of this attempt for fπ is shown in Fig. 2. From these
figs., there is no data alignment in the region 0 ≤ γ ≤ 2. This is the property of QCD when the
finite size hyperscaling is applied to.

These properties (ChPT and FSHS ) in N f = 4 may hint whether N f = 8 is χSB or the confor-
mal/walking.

3



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
2
)
0
3
5

Exploring walking behavior in SU(3) gauge theory with 4 and 8 HISQ quarks Kei-ichi Nagai

0 1 2 3 4 5 6 7

L m
 1/(1+γ)

0

0.5

1

1.5

2

2.5

3

L
 f

π

L=12, T=18
L=16, T=24
L=20, T=30

β=3.7,  γ = 0.0

0 1 2 3 4 5 6 7

L m
 1/(1+γ)

0

0.5

1

1.5

2

2.5

3

L
 f

π

L=12, T=18
L=16, T=24
L=20, T=30

β=3.7,  γ = 1.0

0 1 2 3 4 5 6 7

L m
 1/(1+γ)

0

0.5

1

1.5

2

2.5

3

L
 f

π

L=12, T=18
L=16, T=24
L=20, T=30

β=3.7,  γ = 2.0

Figure 2: Finite size hyperscaling test of fπ in N f = 4 SU(3) gauge theory; Left: at γ = 0.0, Center: at
γ = 1.0, Right: at γ = 2.0.

3.2 N f = 8

In this subsection, we analyze N f = 8 system by the ChPT and the finite-size hyperscaling test.
The panels in Fig. 3 are Mπ , fπ and Mρ at β = 3.8 in partucular as a function of the quark mass
m f , and the polynomial fit (quadratic fit) and the power fit are plotted.

In Mπ and Mρ , the plateau appears in m f . 0.06 on small lattice (123 ×32) and in m f . 0.02
on large lattice (243 ×32) at β = 3.8. In the corresponding region of the plateau, fπ behaves like
the linear toward the zero. Since these might be the effect of the finite size effect or might be in a
different vacuum, these data are not included in the following analyses.

In Fig. 3, to take the infinite volume limit is difficult. Then we take the data on the largest
volume at each m f for the fitting. The fit range is 0.0 ≤ m f ≤ 0.1. The fit result of M2

π is obtained
as follows: M2

π = 2.31(2)m f +12.5(1)m2
f ,(χ2/dof = 17.9) and M2

π = 5.43(4)m1.197(3)
f ,(χ2/dof =

34.0). For fπ , χ2( fπ)/dof = 14.7 in the power fit and χ2( fπ)/dof = 6.1 in the quadratic fit, then
fπ = 0.0295(3) in the limit m f → 0 as the quadratic fit result. For Mρ , χ2(Mρ)/dof = 6.5 in the
power fit and χ2(Mρ)/dof = 1.3 in the quadratic fit, then Mρ = 0.191(8) in the limit m f → 0 as the
the quadratic fit result. In all cases, since the χ2/dof in the quadratic fit is better than that in the
power fit, the chiral limit by the quadratic fit gives the non-zero value of fπ and Mρ . Thus, it seems
that the N f = 8 is in the χSB phase.

Here we discuss the validity of the ChPT fit. We used the expansion parameter defined as

χ = N f

(
Mπ (m f )

4πFπ (m f =0)

)2
. In our simulation, χ ≃ 1.2−2.5 ≃ O(1) at the minimum value of Mπ ≃ 0.2

in our simulation. Therefore, our result in N f = 8 is consistent with ChPT.
Next we consider the chiral condensate by the direct calculation, ⟨Ψ̄Ψ⟩= Tr[D−1

HISQ(x,x)], and
GMOR relation, Σ = f 2

π M2
π/m f . In the result of the direct calculation, ⟨Ψ̄Ψ⟩ ∼ m f and then the

chiral limit is very small in the lattice unit. In GMOR relation, the solid line is the combination of
the quadratic fit results of M2

π and fπ . This chiral limit is is Σ ≃ O(0.001). Thus the chiral limit
of the chiral condensate is very small in the lattice unit. This means the chiral condensate of the
techni-quark, ⟨Q̄Q⟩, is tiny value and then the χSB is not strong to give the mass in the SM quark
sector. Therefore, in the following, we attempt to find the tail (the remnant) of the conformal.

If the system is in the conformal window, the data is in the good agreement with the FSHS
having the universal value of γ Although N f = 8 is consistent with ChPT (χSB), because of the
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Figure 3: ChPT (the quadratic fit) in fπ in N f = 8 SU(3) gauge theory; Left: M2
π as a function of m f ,

Center: fπ , Right: Mρ . The solid lines are the quadratic fit and the power fit.
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Figure 4: Ciral condensate in N f = 8 SU(3) gauge theory; Left: ⟨Ψ̄Ψ⟩, Right: GMOR relation and the line
obtained from the quadratic fit results of M2

π and fπ .

tiny value of the chiral condensate, we apply the FSHS to N f = 8 system in order to catch the tail
of the confromal if there is. Fig. 5 is the FSHS test of fπ for the various γ . The data is aligned
(collapsing) at around γ = 1.
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Figure 5: Finite size hyperscaling test of fπ in N f = 8 SU(3) gauge theory; Left: at γ = 0.6, Center: at
γ = 1.0, Right: at γ = 1.4.
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Therefore, to quantify this alignment, we attempt the linear fit as the leading approximation of
FSHS. Panels in Fig. 6 are the linear fit result of FSHS for Mπ , fπ and Mρ from the left to the right.
Although χ2/dof is not small, the linearity for each observable is not worse and it seems that the
remnant of conformal exists. The result, γ(Mπ) ̸= γ(Mρ) ̸= γ( fπ) ∼ 1.0, indicates the remnant of
the conformal. This situation is very interesting to construct the walking model.
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Figure 6: Finite size hyperscaling fit by the linear ansatz of fπ in N f = 8 SU(3) gauge theory; Left: Mπ ,
Center: fπ , Right: Mρ . The open symbol is not included in the fit data.

4. Discussion and Summary

We have made simulations of lattice QCD with 4 and 8 flavors by using the HISQ action. We
obtained the following preliminary result; The N f = 4 QCD is in good agreement with the chiral
broken phase and the fπ data is not aligned in 0 ≤ γ ≤ 2, which is the characteristics of QCD
applied to the FSHS test. The N f = 8 is consistent with ChPT (χ-parameter) and is not inconsistent
with FSHS. We extracted the γ-value from the FSHS test; non-universal γ and γ( fπ) ∼ 1.0. We
show the table for various β s as the very preliminary result. To understand the behavior of N f = 8,

β = 3.6 β = 3.7 β = 3.8 β = 3.9 β = 4.0
γ in Mπ 0.64(1) 0.63(1) 0.61(1) 0.56(1) 0.56(1)
γ in fπ 0.98(2) 0.99(1) 0.95(1) 0.92(1) 0.91(1)
γ in Mρ 1.02(2) 0.91(4) 0.84(3) 0.79(4) 0.77(6)

Table 1: Preliminary. The statistical error only

We compare with our simulation of N f = 12 which is consistent with the conformal [11] and the
Schwinger-Dyson equation analysis on the finite size and mass [12]. According to SD-eq. analysis,
γ ≃ 1.0 for the near conformal in χSB phase. This might indicate that the system with γ ∼ 1.0 is
near conformal/walking.

Therefore, from these analyses (ChPT, FSHS and the comparison with N f = 4 and 12 simula-
tions and with SD-eq. analysis), N f = 8 is the candidate of the walking theory.

We should mention, however, that there are several possible systematic uncertainties not con-
sidered in this report; As pointed out in Ref. [12], there exists the mass correction in the hyper-
scaling relation for the heavy quark region. Then the linear ansatz adapted in Fig. 6 may not be
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sufficient to fit our data. To improve the situation for better understanding, we will accumulate
more data for various fermion masses and β s on larger lattices, and carry out detailed analysis
using those data.
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