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We present our study to identify the location of the fixed point of SU(3) gauge theory with 12
flavors. We show a method to extract the renormalization group beta function from the data of
lattice renormalized coupling using a simultaneous fit with respect to bare coupling and lattice
size. We show some examples of application of this method to available data from step scaling
study, and compare the location of infrared fixed point.
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1. Introduction

Technicolor model is a model in which extra gauge fields and fermion fields couples to the
Standard Model particles. It gives an alternative mechanism to give the mass of standard model
particles without elementary Higgs particles. To be consistent with the results of experiment, small
enough flavor changing neutral current and large enough standard model fermion mass, this model
need a property called "Walking Technicolor", that the running of technicolor coupling constant
becomes very slow at the intermediate region while keeping asymptotic freedom and spontaneous
breaking at the ultraviolet region and the infrared region. The main issue is that such a theory
really exists or not and, if it does, the details of the theory, e.g., the representation, the number
of colors and fermion flavors of the theory. To clarify this issue, all possible models need to be
studied one by one non-perturbatively, especially the theory which is considered to locate near the
edge of conformal window, the region of the parameter space such that the theory have infrared
fixed point. To identify the location of the edge of the conformal window, non-perturbative study
of lattice simulation is a useful tool and a lot of work have been done on this issue.[1]

When one study the running of coupling constant with lattice simulation, the step scaling
function are widely used. In this article, we reconsider the analysis method of step scaling function.
Especially, I propose an analysis method which does not specify the size of step scaling.

This paper is organized as follows. At first, we review the step scaling function. Next, we in-
troduce the new analysis method. Then, we show the application of the method using the available
data. In the end, we give the summary and comments.

2. Step Scaling Function

The step scaling function gives the growth of the coupling constant with respect to the refer-
ence scale. Provided that a scheme to define the renormalized coupling constant are given and the
coupling constant is u at a reference momentum scale 1/L, 1 the step scaling function σ(u,s) gives
the coupling constant at the scale 1/(sL).

σ(u;s) = g2(1/(sL)) with u = g2(1/L). (2.1)

The step size s is fixed in the step scaling function given by the practical lattice study (typically
s ∼ 2 ). Given the step scaling function with fixed s, to see the coupling constant in the wide range
of scale, one can iteratively apply the step scaling function, say,

ui+1 = σ(ui,s), with ui
def
= u

(
1/(siL)

)
. (2.2)

The relation between renormalization group beta function β (u) = L du
dL and step scaling function is∫ σ(u,s)

u

du
β (u)

=− logs (2.3)

when logs ≪ 1, beta function are approximated as

σ(u,s)−u
logs

∼ β (u) (2.4)

1In this article, u is always the squared of renormalized coupling u = g2.
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To take the continuum limit of the step scaling function from the lattice simulation, one uses fol-
lowing method. (1). Set a scheme such that the reference scale is given by the linear extent of the
space time. (2). Prepare the lattice with lattice sites L̂0 with a set of bare parameter ĝ and calculate
renormalized coupling ulattice at that system. Then prepare the lattice with lattice sites sL̂0 with a
same set of bare parameter ĝ and calculate renormalized coupling. It gives the lattice step scaling
function Σ(u,s, L̂0).

Σ(u,s, L̂0) = g2
lattice(ĝ

(0),sL̂0) with u = g2
lattice(ĝ

(0), L̂0) (2.5)

The difference of Σ(u,s, L̂) and σ(u,s) are the lattice artifact which vanish at L̂ → ∞ limit. The
continuum limit is taken by calculating Σ(u,s, L̂i) using different set of lattice (L̂i,sL̂i) while keep-
ing the same renormalized coupling u for L̂i lattice by tuning the set of bare parameter ĝ(i). The
bare parameter are always set to be the same for L̂i lattice and sL̂i lattice.

σ(u,s) = lim
L̂i→∞

Σ(u,s, L̂i) = lim
L̂i→∞

g2
lattice(ĝ

(i),sL̂i) with u = g2
lattice(ĝ

(i), L̂i) (2.6)

3. Method of Analysis

Before describing the method to extract the beta function, we gave the proof of the consistency
equation (3.5) of multi-step lattice step scaling function. We restrict ourself to use only massless
fermions with chirally-symmetric lattice formulation ( staggered or overlap fermions ). Then the
tunable parameter is bare coupling g0 only. By definition,

Σ
(
g2

lattice(g
2
0, L̂) ;s, L̂

)
= g2

lattice
(
g2

0,sL̂
)
. (3.1)

By substituting (s = s1, L̂ = L̂0), (s = s2, L̂ = s1L̂0) and (s = s1s2, L̂ = L̂0) into this equation, one
get three equations.

Σ
(
g2

lattice(g
2
0, L̂0) ;s1, L̂0

)
= g2

lattice
(
g2

0,s1L̂0
)

(3.2)

Σ
(
g2

lattice(g
2
0,s1L̂0) ;s2,s1L̂0

)
= g2

lattice
(
g2

0,s2s1L̂0
)

(3.3)

Σ
(
g2

lattice(g
2
0, L̂0) ;s2s1, L̂0

)
= g2

lattice
(
g2

0,s2s1L̂0
)

(3.4)

By comparing these equations, one get the consistency condition as,

Σ
(
u ;s1s2, L̂

)
= Σ

(
Σ(u ;s1, L̂);s2,s1L̂

)
, (3.5)

with u = g2
lattice(g

2
0, L̂).

Now, I describe the analysis method. At first, parameterize the beta function using coefficients
cl as β (u) = β (u; cl). By solving the integral equation (2.3), one get the expression of the step
scaling function with cl as σ(u,s;cl). Next, we obtain the lattice step scaling function by adding
lattice artifact term with parameters k j as f (u,s,k j) which vanish at L̂ → ∞. In practice, we neglect
higher order of 1/L̂ by assuming that the simulation is done near enough the continuum limit. In
our analysis, the form of the lattice artifact f (u,s,k j) are highly constrained by requiring Eq.
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(3.5) to be satisfied. Besides the parameterization of Σ with cl and k j, in this analysis one need to
parameterize one set of the renormalized coupling constant which is given by the same lattice site
L0 (parameterized with hm).

g2
lattice(g

2
0, L̂0) = G(g2

0;hm) (3.6)

In this work, we use the quadratic polynomial g2
lattice(g

2
0, L̂0) = h0 + h1g2

0 + h2g4
0. Then, with the

lattice step scaling function Σ(u,s, L̂), one can fit glatt as,

g2
lattice(g

2
0, L̂) = Σ

(
g2

lattice(g
2
0, L̂0) ;s = L̂/L̂0, L̂0

)
(3.7)

By this fitting, we get the parameters cl , k j and hm, then we can reconstruct the beta function using
cl . We emphasize that this fitting are done only for limited region of g0 or u. To get the information
of the beta function in the wide range, we divide the region into small pieces and get the set of cl

for each region. In this way, we can make a "patch" of the beta function.
Now, we show a simplest example, beta function do not depend on u and parameterized by

one constant β (u) = c. Then the step scaling function is given by

σ(u;s) = u+ c logs (3.8)

Now, for simplicity, we only add lattice artifact term proportional to (1/L̂). (Adding higher order
terms is trivial.) The lattice step scaling function is

Σ(u;s, L̂) = u+ c logs+
1
L̂

f (u,s) (3.9)

f (u,s) is the coefficient of lattice artifact. Here, we assume that we can neglect u dependence of
f (u,s). Then using the consistency condition 3.5, we obtain the form of f (u,s) = f (s) as,

f (s) = k
(

1
s
−1

)
. (3.10)

This is the only one expression to satisfy 3.5, when u dependence are omitted and only (1/L) term
are considered.

One can do the similar calculation for the linear beta function , β (u) = c(u−u0). The lattice
step scaling function is written as,

Σ(u ;s, L̂) = u0 + |u−u0|sc +
jMAX

∑
j=1

k j

(L̂) j

(
1
s j − sc

)
(3.11)

Here, one can choose the order of lattice artifact by changing jMAX. Now, it will be helpful to
summarize the assumption which have made in the analysis.
1.) Fit of the beta function β (u) is done in a limited region of u.
2.) Lattice artifact term is a analytic function of u and s.
3.) Lattice artifact term is up to a few order of 1/L̂
4.) For the lattice artifact term f (u,s, L̂), u dependence are omitted.
5.) g2(L0) is described as polynomial of g0 in a small region.
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Figure 1: The reconstructed beta function from the data in [2] (top) and [3] (bottom). The band with
different color shows the different patch, they are reconstructed using different set of the parameter cl (c and
u0 for this case).

4. Application

Here, we show the application of the method. We analyzed the data of TABLE III in [2] and
TABLE IV in [3]. In both case massless staggered fermion are used. We used linear beta function
3.11 and we include the lattice artifact up to second order. The result of reconstructed beta function
is shown in Fig 1. For both case, we see the beta function consistent to be zero in the infrared
region as mentioned in the original articles.

5. Summary and Comments

We provided an alternative method of the analysis of the running of the renormalized coupling
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constant. The basis of our analysis are four Equations In the application, our method gives the
consistent results of original article with conventional step scaling function analysis. In the analysis
method here, some assumption we put will not be justified in general (ex. Linear beta function,
omitting u dependence of lattice artifact term). To overcome these, the further development the
analysis method keeping the same approach is going on.
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