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1. Motivation and overview

Despite the fact that the latest results from the Large Ha@Qullider make it more and more
unlikely that supersymmetry, at least in its variety as aimat extension to the Standard Model,
is accommodated in nature, supersymmetric quantum fielorifeeremain to be interesting in
their own right. In particular, spontaneous supersymmeteaking and the corresponding phase
transition is an interesting non-perturbative phenonemlbich often evades a quantitative descrip-
tion even in simple models such as th€ = 1 Wess-Zumino model in two dimension on which
we focus in these proceedings. Often, a specific model mayagrmat undergo a supersymmetry
breaking phase transition and it is usually not clear hova suitansition is realised in detail. While
the lattice regularisation provides a convenient setupetfopm detailed non-perturbative numeri-
cal investigations, for systems which exhibit spontanesaersymmetry breaking straightforward
Monte Carlo simulations are not possible due to a fermion pigblem related to the vanishing
of the Witten index [1]. However, it has been shown that tlgs groblem can be circumvented
by using the fermion loop formulation [1, 2, 3] and simulgtithe system with the open fermion
string algorithm [4, 5].

In these proceedings, we present a quantitative non-pative investigation of the®. 4 =1
Wess-Zumino model as follows. First we give a brief defimitaf the model and then discuss its
formulation in terms of fermion loops. After reviewing iteauum structure and the symmetry
breaking pattern we go on to describe quantitatively itssysgectrum in the supersymmetric and
the supersymmetry broken phase as well as across the phasiion.

2. The 4/ = 1Wess-Zumino modd on thelattice

The .+ = 1 Wess-Zumino model in two dimensions [6] is one of the sirsipleodels which
may exhibit spontaneous supersymmetry breaking. Its degriefreedom consist of one real Majo-
rana fermion fieldp and one real bosonic fietg, while its dynamics is described by the Lagrangian

density
2= 2(000)*4 2P (07 + 3B+ P0) w. @)

Here,P(p) denotes a generic superpotential, 8\dP” its first and second derivative with respect
to @. In the following we will concentrate on the specific form

_m 1 3
P(p) = i 9+399 (2.2)

which leads to a vanishing Witten ind#x = 0 and hence allows for spontaneous supersymmetry
breaking [7]. The corresponding action enjoys the follaywo symmetries. First, there is a single
supersymmetry given by the transformations

Sp=¢y, dyY=(dp—Pe, oY=0, (2.3)
and secondly, there is a discréié2) chiral symmetry given by

o— -0, w_)v\‘}wv w—’—UJVS, (24)
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whereys = 03 can be chosen to be the third Pauli matrix. The fact that thtéewindex is zero for
the chosen superpotential can be derived from the transtaymproperties of the Pfaffian of the
Dirac operator under th&(2) symmetryp — — ¢ [3].

Let us now move on to describe the regularisation of the mmaléhe lattice. For the fermionic
fields we use the Wilson lattice discretisation yielding filienion Lagrangian density

1 ~ 1
L= EET%(Vuau - Ed*d‘i‘ P"()€,

whereé is a real, 2-component Grassmann figdtl= —%" is the charge conjugation matrix and
0*,0 are the backward and forward lattice derivatives, respegti In order to guarantee the full

supersymmetry in the continuum limit, one needs to intredhe same derivative, in particular the
Wilson term, also for the bosonic fields [8]. As a consequeircaddition to the supersymmetry
also theZ(2) chiral symmetry is broken by the lattice regularisationhbiot the bosonic and the

fermionic sector.

Nevertheless we can now use the exact reformulation of timeideic degrees of freedom in
term of closed fermion loops (cf. [1] for further detailsogether with the fermion string algorithm
[4, 5] this allows simulations with unspecified fermionicumolary conditions which do not suffer
from the fermion sign problem [3] and for which critical slmg down is essentially absent even
in the presence of a massless fermionic mode such as theti@olds

3. Supersymmetry breaking pattern

It is useful to briefly review the (super-)symmetry breakipgttern. The potential for the
bosonic field is a standaxgP-theory which may trigger Z(2) symmetry breaking phase transition.
In particular, for largam/g one expects that tH&(2) symmetry is broken. In that case, the vacuum
expectation value of the boson fiel@) = =m/2g is expected to select a definite ground state for
the system, either bosonic or fermionic. On the other hamdsihallm/g one expects thé&.(2)
symmetry to be restored witfp) = 0 in which case no unique ground state is selected and hence
supersymmetry is broken. In fact, the associated tunndlgtgeen the two allowed bosonic and
fermionic vacua corresponds to the infamous massless Budsaode.

In [3] it was indeed demonstrated, using the Witten index

W= pr = Zf/gg - Zflo - Zf/ol - Zffll?

as an order parameter, that a supersymmetry breaking pfeassition occurs for specific cou-
plings g/m depending on the lattice spacing setdry Here,Z,, denotes the partition function
with periodic boundary conditions in both directions whilg; denote partition functions with
fixed topological boundary conditions [2]. The expected syetry breaking pattern and the corre-
sponding vacuum structure follow exactly the expectatibescribed above. In particular, for large
m/g one is in aZ(2) broken phase where supersymmetry is unbroken, while foil sma the
Z(2) symmetry is restored and the supersymmetry is broken. Matetis situation only holds in
the infinite volume limit: at any finite volume t1&(2) symmetry is always restored (and hence the
supersymmetry broken) by soliton solutions which mediedaditions between boson field con-

figurations with(@) = £m/2g [9]. We have now further confirmed this scenario using thedNar
identity (P').
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Figure1: Susceptibility of the volume averaged Ising projected ndgeld (left plot) and the Binder cumu-
lant of the boson field (right plot) for several volumesgt= 0.0625.

3.1 Z(2) phasetransition

In order to further quantify the phase transition we ingeted in detail several order pa-
rameters sensitive to tH&(2) phase transition. It should be noted that there exists ricordar
parameter for th&(2) transition, since the Wilson lattice discretisation beakt just the super-
symmetry, but also thg&(2) chiral symmetry in the bosonic sector. However, it turnstbat at the
lattice spacingsig < 0.25 which we simulated, the system behaves sufficiently nantn-like, so
that accurate determinations of the phase transition assille without problems. This is exem-
plified in figure 1. In the left plot we show the susceptibiljing of the volume averaged Ising
projected boson fie@,sing =1/V y,sign@]. The susceptibility shows a nice finite volume scaling
and the scaling of the susceptibility peak indicates a stooder phase transition, presumably in
the universality class of thed2sing model. The right plot of figure 1 shows the Binder cumtla
of the boson field for various volumes, all at fixed lattice@pgag = 0.0625. From the position
of the susceptibility peak and the crossing of the Binder wlamt one can infer the critical bare
massam. at which the phase transition occurs.

In general, different order parameters consistently ef@i@ phase transition only in the ther-
modynamic limit when the finite volume pseudo-phase trarsibecomes a true one. In the left
plot of figure 2 we show the critical bare maas. as a function of the inverse volume expressed
in units ofg, as obtained from the two (pseudo-)order parameters disdusbove. We find that
the determination from the Binder cumulant shows rathegeldimite size effects, in contrast to
the one from the susceptibility. However, in the thermodyitalimit they both agree and this is
sustained for all lattice spacings (right plot). The inseally shows the continuum extrapolation
of the critical couplingf; = g/m; using the bare massm. and the one renormalised using 1-loop
continuum perturbation theorgyf. The renormalised critical coupling in the continuum cawno
be compared to the one obtained in [10] using a differentelisation and algorithm.

4. Mass spectrum

We determine the mass spectrum from the temporal behaviamari@lators projected to zero
spatial momenturmC(t) ~ (¢(0)0T)(t)). For the boson masses we use #{@)-odd and -even
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Figure 2: Thermodynamic limit of the critical massm. from the Binder cumulant and the peak of the
susceptibility atag = 0.0625 (left plot) and for a range of other couplireg= 0.25— 0.03125 (right plot).
The inset shows the continuum limit of the bare and the reabised critical coupling; = g/mP2eR

operators? = @ and¢?, respectively, while for the fermion masses we tise & and& @. We note

that in the supersymmetri€(2)-broken phase the vacuum can not distinguish between timeaenk
odd states and hence we extract the same mass using the tatoopenhile in the supersymmetry
(SUSY) brokernZ(2) restored phase, the vacuum respectsZf® symmetry and distinguishes
between states with differef#(2) quantum numbers. Furthermore, in the SUSY broken phase
we can measure excitations both in the bosonic vacuum,ni£gj,, and in the fermionic one,
I.e.Zg,+Zg, +Zs,. We emphasise that simulations in the SUSY broken phasengréeasible

due to the fact that the fermion loop algorithm essentidilpieates critical slowing down [4, 5],
despite the emergence of the (would-be) Goldstino.

In figure 3 we show examples of boson mass extractions in tf&YStokenZ(2)-symmetric
(left plot) and in the supersymmeti#&{2) broken phase (right plot), both in the bosonic vacuum.
The top panel shows the full correlator, the middle one thneoted part and the lowest one the
corresponding effective masses. In the SUSY broken phasmamwét double exponentials (plus a
small shift due to the residudl(2) breaking), while in th&Z(2) broken phase only one exponential
can be fitted, since the signal is quickly dominated by thetdlations stemming from the large
disconnected contribution.

In figure 4 we show examples of fermion mass extractions ih Ipbiases. In the left plot
(SUSY broken phase) the top panel shows the correlator df{Bgeven state which can be well
fitted with a double exponential with the lowest mass cowagng to the Goldstino mass. The
middle panel shows thg&(2)-odd state fitted with a single exponential. The right platves the
fermion correlator in the supersymmetric phase (top panela log scale (middle panel) and the
corresponding effective masses (bottom panel). It is rkaide that the signal of the fermion
correlator can be followed over more than six orders of mtagei Of course this just reflects the
efficiency of the employed fermion loop algorithm [4].

Finally, in figure 5 we show the full boson and fermion massspen in the left and right plot,
respectively, as a function of the bare massacross the supersymmetry breaking phase transition
occurring at arounam. ~ 0.042. We see how the mass spectrum in the SUSY br@kei/
symmetric phase fans out into ti&2)-even and -odd states, with bosonic and fermionic masses
non-degenerate, while in the supersymmeéfri2)-broken phase the states collapse onto a degen-
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Figure 3: Boson mass extraction in the SUSY broké(2)-symmetric (left plot) and in the
supersymmetri@(2) broken phase (right plot).

erate mass, in addition to the boson and fermion masses égual. In the SUSY broken phase we
can crosscheck the mass determination in the bosonic seittothe one in the fermionic sector
and we find very convincing consistency. This agreementenSY broken phase and the de-
generacy of the boson and fermion masses in the supersyimiplefise is rather surprising, given
the fact that the simulations are at finite and rather coatsied spacingag= 0.25. Moreover, it
should be kept in mind, that in the SUSY broken phase it iseradfifficult to keep the systematic
effects from mixing with higher excited states under cadntro

A first preliminary investigation of the effects of the finitelume on the spectrum reveals that
they are essentially negligible for the volurhg¢a = 64 that we are using here. This is not quite
the case for the boson mass spectrum in the SUSY broken pinafset, the investigation in [11]
suggests a distinct finite volume scaling of the boson mag#lkshe lowest boson mass vanishing
towards the thermodynamic limit.

An interesting feature of the spectrum of a theory with sppabusly broken supersymmetry is
of course the occurrence of the massless Goldstino. Sirmariregularisation the supersymmetry
is broken explicitely at any finite lattice spacing, the Gaildo is only approximately massless as
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Figure 4: Fermion mass extraction in the SUSY broké#)-symmetric (left plot) and in the
supersymmetri@(2) broken phase (right plot).



Supersymmetry breaking in th¢ = 1 WZ model

Urs Wenger

ag=0.25, gL=16

ag=0.25, gL=16

e Goldstino amplitude
Goldstino mass

o My bosonic sector o M. bosonic sector

(2) .
o M:( ) bosonic sector —
o M. fermionic sector

MB(Z) bosonic sector —

o My fermionic sector

o MB(Z) fermionic sector o MF(Z) fermionic sector

| I | I | I I I | I
15 2 25 3 15 2 25 3
am am

o Al
0 0.5

>—\4
-

Figure 5: Mass spectrum for bosonic (left plot) and fermionic exaitas (right plot). The superscriff)
denotes the excited state.

can be seen in figure 5. To corroborate the identificationieflthv mass state as the Goldstino, we
plot in the inset of the right plot also the contribution (ditygle) of that state to the full fermion
correlator. It turns out that the amplitude decreases asnerease the bare mass and vanishes
at the transition to the supersymmetric phase, i.e. the <Bintdldecouples from the system at the
supersymmetry restoring phase transition.
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