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We analyze the large-N behavior of SU(N) lattice gauge theories with adjoint fermions by study-
ing volume-reduced models, as pioneered by Eguchi and Kawai. We perform simulations on a
single-site lattice for N f = 1 and N f = 2 Wilson Dirac fermions with values of N ≤ 53. We show
for both values of N f that in the large-N limit there is a finite region, containing both light and
heavy fermions, of unbroken center symmetry where the theory exhibits volume independence.
Using large-N reduction we attempt to calculate physical quantities such as the string tension and
meson masses.
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1. Introduction

The idea of volume independence of large-N gauge theories dates back to the paper by Eguchi
and Kawai [1]. They have shown that, provided certain conditions hold, in the large-N limit the
pure gauge SU(N) theory defined on a single-site lattice1 (the so-called Eguchi-Kawai model) has
the same Wilson-loop expectation values as the theory defined on arbitrary (including infinite)
volume.

The only non-trivial assumption of their prescription is the lack of spontaneous breaking of
the ZN center symmetry. This assumption was quickly shown to be false [2]. The center symmetry
in pure gauge theory is spontaneously broken below some critical lattice size Lcrit as can be seen
both by lattice calculations [2, 3, 4] and in perturbation theory [2, 5].

Several ways to fix Eguchi-Kawai reduction were proposed over the years. Let us quickly
sketch the three particularly interesting approaches:

1. Use twisted boundary conditions (the so-called Twisted Eguchi-Kawai or TEK model) [6, 7].
While the original choice of twists has been shown not to work [8, 9, 10] a different choice
appears to overcome the problems [11, 12].

2. Always work with L > Lcrit(b) [4]. This idea known as partial reduction or continuum reduc-
tion2, allows one to make simulations directly in the pure gauge theory at the price of having
to work with a box of finite physical size (thus with Lcrit→ ∞ in the continuum limit).

3. Use adjoint fermions to stabilize the center symmetry. This idea, inspired by the orbifold
large-N equivalences [15, 16], was proposed in Ref. [17] and is the basis of our analysis3.

In this paper we discuss the single-site lattice model with adjoint fermions – the Adjoint
Eguchi-Kawai (AEK) model. It is shown in Ref. [17] that by adding N f > 1/2 massless adjoint
Dirac fermions obeying periodic boundary conditions, the center symmetry remains intact at the
one-loop level. Perturbatively, fermions with masses larger than ∼ 1/(aN) were expected to break
the center symmetry [20, 21]. However several lattice calculations [22, 23, 24] found that the cen-
ter symmetry is likely to be intact for rather heavy fermions of mass ∼ 1/a, both for N f = 1 and
N f = 2. In Ref. [25] we argued that this result holds in the large-N limit for N f = 2. In this pa-
per we present evidence that this is also most likely the case for N f = 1. This result was given a
semi-analytic understanding (using arguments going beyond perturbation theory) in Ref. [26].

Our results are of considerable phenomenological interest. Volume reduction in the region
of heavy fermions, where the dynamics is governed mostly by gauge degrees of freedom, is a
realization of the original idea of Eguchi and Kawai. Also, the N f = 1 AEK model can be connected
by a chain of large-N equivalences to the Corrigan-Ramond large-N limit of two-flavour QCD
[17, 22]. The N f = 2 AEK model, on the other hand, is supposed to behave similarly (e.g. with
respect to the β -function) as SU(2) gauge theory with 2 adjoint flavours which is most likely a
conformal field theory (see Ref. [27] and references therein).

1To be precise Eguchi and Kawai discussed the U(N) gauge theory that however coincides with SU(N) as N→ ∞.
2See also Refs. [13, 14] for analysis in three dimensions.
3There is also a related idea of trace-deformed reduction [18, 19] that however becomes rather complex when

reducing more than one dimension.
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Motivated by the success of the reduction we attempt to extract large-distance quantities such
as string tension and meson masses from our simulation. We discuss the N scaling of the effective
volume and its impact on practicality of calculations in reduced models.

2. Range of quark mass where volume reduction holds

We analyze the single-site SU(N) lattice model with adjoint Wilson fermions by means of
Monte Carlo simulations. The partition function is

Z =
∫

D[U,ψ, ψ̄]e(Sgauge+∑
Nf
j=1 ψ̄ j DW ψ j), (2.1)

where Sgauge is the single-site equivalent of the Wilson plaquette action:

Sgauge = 2Nb ∑
µ<ν

ReTrUµUνU†
µU†

ν (2.2)

(b = 1
g2N being the inverse ’t Hooft coupling) and DW is the Wilson Dirac operator on a single site

(with periodic boundary conditions in every direction):

DW = 1−κ

4

∑
µ=1

[(
1− γµ

)
Uadj

µ +
(
1+ γµ

)
U†adj

µ

]
, (2.3)

where the hopping parameter κ is related to the bare fermion mass by

m0 =
1

2κ
−4. (2.4)

Note that the critical value κc (where the fermion mass vanishes) is shifted from 1/8 to a larger
value due to additive renormalization and only becomes 1/8 in the continuum limit.

Our numerical simulations are performed using the Hybrid Monte Carlo algorithm (equipped
with the rational approximation in the N f = 1 case). We have performed extensive scans of the
κ − b plane to find the phase structure of the model (see Ref. [25] for details on the N f = 2 case)
reaching N ≤ 53. Our main observable for the detection of breaking of the center symmetry are the
“open loops”:

Kn ≡
1
N

Tr Un1
1 Un2

2 Un3
3 Un4

4 , with nµ = 0,±1,±2, . . . (2.5)

where U−n =U†n. Those results were supplemented by histograms of phases of link eigenvalues.
The results for N f = 1 and N f = 2 are qualitatively similar. In both cases we find that, at fixed

b, when decreasing the fermion mass from infinity (κ = 0) we go from a phase with completely
broken center symmetry (as in the pure gauge model) to phases with partial breakings of Z4

N . When
κ exceeds a critical value κ f (b) (or, equivalently, when m is smaller than m f ) we enter the so-called
“funnel” where the center symmetry is unbroken and volume reduction holds.

An important question is whether the funnel remains of finite width in lattice units as N→ ∞.
In Ref. [25] we performed an extrapolation to the large-N limit at b = 1 and found

κ f (b = 1, N = ∞) = 0.0655(5), (2.6)
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Figure 1: Large-N extrapolations of κ f . Note that the errors are rather conservative as the main goal was
the exclusion of the “closed funnel” hypothesis.

as shown in Fig. 1(a). Since we know that κc > 0.125, this implies that the edge of the funnel
lies below κc even at N = ∞. If we attempt to force a fit with κ f → 0.125 when N → ∞, we find
χ2/d.o.f. = 23, as shown in the figure. We have now performed a similar calculation in the N f = 1
case, obtaining

κ f (b = 1, N = ∞) = 0.0937(3), (2.7)

as shown in Fig. 1(b). Thus the funnel is narrower at N f = 1. The fit assuming κ f → 0.125 at
N = ∞ now has χ2/d.o.f. = 2.9, so, while the closure of the funnel is not definitely excluded, we
view this possibility as unlikely (particularly in light of the fact that κc > 0.125 due to additive
renormalization, making the fit poorer).

3. Physical quantities: preliminary results & outlook

In Ref. [25] we showed that the AEK model with heavy quarks reproduces the large-volume
pure gauge values of the plaquette very well. The natural next step using volume reduction is to
calculate some long-range quantity such as the string tension. This can be done by calculating
the static quark potential from reduced Wilson loops (wrapped many times around the single-site
lattice). However, at our values of N we found it impossible to calculate the quark potential at
separations large enough to give a reliable estimate. This was primarily caused due to large 1/N
corrections, and was not an issue of statistical errors.

An example of the observed unphysical behaviour caused by the 1/N corrections is the slow
rise of Wilson loops at large separations. In Ref. [25] we showed that this can be understood
qualitatively by inspecting the strong coupling expansion. On the single site every link in the
Wilson loop comes in a pair with its hermitian conjugate and thus the zeroth order contribution in
the strong-coupling expansion does not vanish.

One way to tackle this problem is to use 24 lattices. The zeroth order does disappear for
the odd-sized loops. In Fig. 2 we see that indeed the size of finite-N corrections is substantially
improved. However, our values of N to date (N ≤ 15) are too small to allow extraction of the string
tension.
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Figure 2: Wilson loops on 24 lattice. N = 10, b = 0.35, κ = 0.1.

Another calculation that one can perform on a single site is finding meson masses using the
“quenched momentum prescription” [28]. Our first attempt used fundamental Wilson and over-
lap valence quarks over the sea of heavy adjoint Wilson fermions – this can be thought of as a
quenched approximation as we expect the heavy adjoint fermions to have a negligible influence on
the propagators. The method of quenched momentum prescription is based on inserting additional
U(1) factors into the temporal gauge links, different for the quark and antiquark. These can be
interpreted as momenta. For the pion the propagator one has

Mπ(p,m) = Tr
{

γ5 D−1(U4 eip/2,m)γ5 D−1(U4 e−ip/2,m)
}
. (3.1)

One can then extract the mass of the pion directly in momentum space. Our first results show
sensible behaviour of the pion mass as a function of κ , however we also see rather large 1/N
corrections and the values of N we used are too small for a reliable large-N extrapolation.

The beauty of reduction is that both the physical volume and the color degrees of freedom
of the unreduced theory are packaged into the color degrees of freedom of the reduced theory.
Thus it makes sense, at least qualitatively, to introduce an effective box size, Leff(N). (For further
discussion of the interpretation of this quantity see Ref. [25].) An important practical issue for
numerical simulations is how Leff scales with N. The reasonable possibilities appear bracketed by
two cases—Leff ∼N1/4, as motivated by the orbifold equivalence, or Leff ∼N1/2 (as for the Twisted
EK model)[29, 30]. (The most optimistic case Leff ∼ N1 seems to be excluded by the data [25]). In
Ref. [25] we argued that the Dirac operator spectrum prefers Leff ∼ N1/2, i.e. the more optimistic
scaling behaviour. The situation is, however, far from clear, with different observables giving
different indications. We hope that comparisons with results from a 24 lattice may help elucidate
the issue.

Another matter is the size of the finite-N corrections on the observables. We clearly see
O(1/N) corrections in the plaquette and the Polyakov loops [25] that are rather large. It it thus
promising to use twisted boundary conditions (the so-called Twisted AEK model [26, 31]) which
have only O(1/N2) corrections and automatically have Leff ∼ N1/2 scaling.

Finally, it would also be very interesting to compare the meson masses obtained using quenched
momentum prescription with a more standard calculation involving a single elongated direction.
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Such a setup also allows calculating the glueball masses.
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