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The simplest Gauge-Higgs Unification model is a five-dimensionalSU(2) gauge theory compact-
ified on theS1/Z2 orbifold, such that on the four-dimensional boundaries of space-time there is
an unbrokenU(1) symmetry and a complex scalar, the latter identified with theHiggs boson.
Perturbatively theU(1) remains spontaneously unbroken. Earlier lattice Monte Carlo simulations
revealed however that the spontaneous breaking of theU(1) does occur at the non-perturbative
level. Here, we verify the Monte Carlo result via an analytical lattice Mean-Field expansion.
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1. Introduction

The discovery of a Higgs-like boson at the LHC raises severalquestions, one of them being
an understanding of the origin of the associated mechanism of Spontaneous Symmetry Breaking
(SSB). One of the most exciting explanations is a possible connection of the mechanism to the
existence of an extra dimension [1]. In this, "Gauge-Higgs Unification" (GHU) scenario, the Higgs
boson comes from some of the extra dimensional components ofthe five-dimensional gauge field.
The model we will discuss here is anSU(2) gauge theory in five dimensions with the fifth di-
mension compactified on theS1/Z2 orbifold. The embedding of the orbifold action in the gauge
field AA

M whereM = µ ,5 is a Lorentz index andA= 1,2,3 is a gauge index, is such thatA3
µ with

µ = 0,1,2,3 andA1,2
5 are even, and all other components are odd. The latter is the "Higgs", a com-

plex scalar in the fundamental representation of the unbrokenU(1) boundary symmetry. This is the
simplest, prototype model. Its generalization to anSU(3) bulk symmetry leaves anSU(2)×U(1)
symmetry on the boundary with two complex doublet Higgs fields, in the fundamental representa-
tion of theSU(2) factor. We believe that if the mechanism of SSB is present in the simpler system,
it will be generically present also in the more complicated cases, so we study it first in theSU(2)
model. We also take the point of view that SSB is driven by puregauge dynamics, a fact that has
been observed in earlier Monte Carlo simulations [2]. In fact, a perturbative 1-loop computation
of the Coleman-Weinberg potential does not yield SSB in the pure gauge system at infinite cut-off
[3]. With a finite cut-off it is possible in principle to have SSB [4], however it is not possible
to prove this in the perturbative context since the quantum theory is non-renormalizable. All this
points to the necessity for developing a non-perturbative analytical tool which can probe the sys-
tem near its bulk phase transition [5], where a scaling regime with suppressed cut-off effects might
exist. Such a formalism has been developed in [6, 7] and it is an expansion in fluctuations around
a Mean-Field (MF) background [8]. There is serious evidencethat the MF expansion describes the
non-perturbative system with periodic boundary conditions faithfully [9], so we will now apply it
to the orbifold model as well.

The parameters of the model are the dimensionless five-dimensional lattice couplingβ , the
anisotropyγ and the lattice size which is set by(T,L) points along the(µ = 0,µ = 1,2,3) di-
rections andN5 + 1 points along the extra dimension.L will be taken always large enough so
that physics does not depend on it. Typically this happens when L ≥ 200 approximately. As the
lattice action, the Wilson plaquette action is used, with the orbifold boundary conditions and the
anisotropy appropriately implemented in it [7].

2. The Mean-Field expansion

The first step in the MF formalism is to trade the gauge linksU of the lattice with unconstrained
complex variablesv and a set of Lagrange multipliersh that ensure that the memory of the gauge
nature of the links is not lost. Then, the gauge links can be integrated out. The resulting effective
action is then minimized with respect to the left over degrees of freedomv andh. The saddle point
solution defines the MF background. We will be considering lattices wich are isotropic in theµ
directions and have an anisotropyγ along the fifth dimension. Consequently, the background is
v0(n5) along four-dimensional hyperplanes andv05(n5+1/2) along the fifth dimension. Heren5 is
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the discrete label of extra dimensional points on the lattice. The phases of the system are defined
as follows:

• Confined phase:v0(n5),v05(n5+1/2) = 0.

• Layered phase:v0(n5) 6= 0, v05(n5+1/2) = 0.

• Deconfined phase:v0(n5),v05(n5+1/2) 6= 0.

The above solutions are found by solving numerically the non-linear algebraic equations that reflect
the saddle point of the path integral. The boundary conditions ensure that this anisotropic solution
is not an artifact, since translational invariance is broken along the fifth dimension by the presence
of the boundaries.

We parametrize the fluctuations around the MF background as

v = v0+ ivAσA,v0,A ∈C

h = h0+ ihAσA,h0,A ∈C.

These are introduced in the formalism by the substitution

v−→ v0+v

h−→ h̄0+h

in the path integral and performing a derivative expansion on the effective action and on the gauge
invariant observableO.

The second derivative part of this expansion defines the lattice propagator

K−1
M′M′′ = K−1

M′M′′(p′,n′5,M
′,α ′; p′′,n′′5,M

′′,α ′′) , (2.1)

with p= (p0, pk) the four-dimensional lattice momenta andα = 0,A a gauge index. The quantity

〈O〉= O[v0]+
1
2

tr

{

δ 2
O

δv2

∣

∣

∣

∣

∣

v0

K−1

}

(2.2)

defines an observable to first order in the fluctuations. The time-dependent correlatorC(t) is then
defined as

C(t) = 〈O(t0+ t)O(t0)〉− 〈O(t0+ t)〉〈O(t0)〉 , (2.3)

with t0 an arbitrary initial time and the mass of the associated ground state is extracted from

m= lim
t→∞

ln
C(t)

C(t −1)
. (2.4)

The main observable of our interest will be the Wilson LoopOW(r, t) of lengthr along one of the
dimensions on the boundary. The static potential extractedas

t → ∞ : e−V(r)t ≃< OW > (2.5)
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Figure 1: Contributions to the static potential on the boundary of theorbifold: gauge boson exchange and
self energy.

contains the key information about SSB: if the static potential is of a four-dimensional Yukawa
form with the Yukawa mass identified with the mass of the boundary gauge boson, then we have a
spontaneously brokenU(1) on the boundary. In this case, we are entitled to call this gauge boson a
"Z boson". To leading order in the MF expansion, the two types ofgauge boson exchange diagrams
appearing on fig. 1 dominate the Wilson Loop.

Specializing to ourSU(2) model, for the static potential, we arrive at the result [7]:

V(r) =− log(v0(0)
2)−

1
2

1
L3

1
(v0(0))2 ∑

p′k
{

1
3∑

k

[

2cos(p′kr)+2
]

K−1((0, p′k),0,0,0;(0, p′k),0,0,0
)

+
1
3 ∑

k

[

2cos(p′kr)−2
]

K−1((0, p′k),0,0,3;(0, p′k),0,0,3
)

}

. (2.6)

There is a similar expression for the Wilson Loop parallel tothe above, sitting in the middle of the
fifth dimension.

The other observable that we will use is the one with scalar quantum numbers, corresponding
to the Higgs field. It is basically a pair of Polyakov Loops (projected on the orbifold) along the
fifth dimension separated in the time direction, exchanginga gauge boson. The computation of this
diagram yields the Higgs correlatorCH(t) (for details see [7]):

CH(t) =
8

L3T
(P(0)

0 )2Π(1)
〈1,1〉(0,0) , (2.7)

whereP(0)
0 is the Polyakov loop evaluated on the background andΠ(1)

〈1,1〉(0,0) is
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Π(1)
〈1,1〉(0,0) = 2∑

p′0

cosp′0t ∑
n′5,n

′′
5

N5−1

∑
r=0

δn′5,r

v0(r +1/2)
·

K(−1)((p′0,~0),n
′
5,5,0;(p′0,~0),n

′′
5,5,0)

N5−1

∑
r=0

δn′′5,r

v0(r +1/2)
. (2.8)

Then the Higgs mass is extracted according to eq. (2.4).

3. Spontaneous Symmetry Breaking

In principle one could attempt to massage further the resulteq. (2.6) and in particular consider
its small lattice spacing expansion. We will not attempt such a task here, instead we will compute
it numerically and fit it to the various possible forms that the static potential could assume. Fur-
thermore, we will present cases where only a four-dimensional Yukawa fit is possible. Having the
Standard Model Higgs mechanism in mind, we will compute the quantity

ρHZ =
mH

mZ
(3.1)

with mH the mass of the complex scalar andmZ the mass of the boundaryU(1) gauge boson,
extracted from the Yukawa fit. This quantity is infinite in theabsence of SSB and finite when there
is SSB. In our framework it depends on three parameters:β , γ andN5. We fix γ = 0.55 and fix
β so thatF1 = mHR (with R the length of the interval - fifth dimension) is constant and follow its
N5-dependence. In fact, it is possible to extract from the static potential not only the Yukawa mass
mZ but also the mass of the first excited state. Such a state, fromthe point of view of models beyond
the Standard Model is typically called aZ′. Thus, we can define a similar to eq. (3.1) quantity

ρHZ′ =
mH

mZ′
. (3.2)

Clearly, by computing both eqs. (3.1) and (3.2) and fixing to adefinite value one of them, would
give us a prediction for the other. The recent result from theLHC motivates us to fix (approxi-
mately)

ρHZ = 1.3875 (3.3)

which then leaves us with a definite prediction formZ′ . The caveat here of course is that such a
process would have to be performed along a Line of Constant Physics (LCP) [10]. Here we will
only present data to show thatρHZ is finite and therefore argue that there is a non-perturbative
dynamical mechanism of SSB in the pure gauge system. We use the term dynamical in order to
stress that the gauge boson becomes massive without introducing by hand a vacuum expectation
value beyond that of the MF background.

On fig. 2 we show our main result regarding SSB in the latticeSU(2) orbifold model in the MF
expansion, forγ = 0.55 andF1 = 0.2. Evidently the order parameter that signals SSB is not infinite
for a wide range ofN5 values, consistent with earlier lattice Monte Carlo results [2]. Moreover,
preliminary results show that it is possible to get forρHZ the value of eq. (3.3), an analysis that will
be presented in [10].
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Figure 2: The ratio of the Higgs to theZ andZ′ boson masses in the mean-field extracted from the static
potential on the boundary.

4. Conclusions

We computed the Higgs toZ-boson mass ratio in a five-dimensionalSU(2) gauge theory reg-
ularized on an anisotropic lattice, with the anisotropy pointing along the fifth-dimension. The
method is that of an analytical Mean-Field expansion arounda non-trivial background, which is
evidently a good approximation to the non-perturbative theory in five (or higher) dimensions. We
computed this quantity in the vicinity of the bulk phase transition. Contrary to the analogous cal-
culation in the perturbative regime, we find that there is spontaneous symmetry breaking of the
boundaryU(1) symmetry already in the pure gauge theory. The breaking is dynamical, since no
Higgs vacuum expectation value is introduced and is consistent with results from Monte Carlo
investigations.
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