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1. Introduction

In his talk “Simulating physics with computers” given at theFirst Conference on Physics and
Computation [1], Richard Feynman addressed the question how to simulate a quantum mechanical
system with the following proposition:

Let the computer itself be built of quantum mechanical elements which obey quan-
tum mechanical laws.

Such a universal quantum simulator is, to a certain extent, realised by a cold atomic gas, which
can be created and studied experimentally. An atomic gas is dilute, such that the interparticle
distances are large and the particles are essentially uncorrelated. At very low temperatures quantum
mechanical phenomena become apparent. Hence cold atomic gases can provide a direct realisation
of many basic models in condensed matter physics.

Dilute gases can be easily manipulated with lasers and magnetic fields, which gives experimen-
talists excellent control over many properties, such as interaction strength, temperature, trapping
potential and even dimension. At low temperatures the thermal de Broglie wavelength is large
compared to the range of the interatomic potential and the exact form of the interaction becomes
unimportant for the macroscopic properties of the system. Therefore the model of a dilute quan-
tum gas can represent various systems in nature and can be used in different areas of physics. For
example it finds application in nuclear physics where results from the field of cold gases can be
used to describe systems such as low-density neutron matteror even atomic nuclei. The neutrons
in the core of a neutron star are believed to form a fermionic condensate that can be studied with the
methods of cold Fermi gases. Even quantum chromodynamics athigh temperatures and densities
might have similar physics to these models.

Fermions are particularly interesting, since interactions between different spin states can re-
sult in a multitude of different regimes [2]. At low energiesthe dominant contribution comes from
s-wave scattering which is governed by a single scale called the scattering lengtha. The regime of
divergent scattering lengtha→ ∞ is called unitarity. The behaviour of the gas then only depends
on two dimensionful parameters: the temperature and the density of the system. Hence all ther-
modynamic observables must be universal functions of the temperatureT and the Fermi energy
of the non-interacting gasεF = (3π2n)2/3/2m. For instance the critical temperature is simply a
dimensionless number times the Fermi energy, while the chemical potential in units of the Fermi
energy is a purely universal function of the temperature.

Due to the nonperturbative nature of the problem numerical approaches are the only ones that
can give reliable quantitative predictions about the properties of the Fermi gas in the unitarity limit.
Unlike the analytical approximations they can start directly from first principles and model the
system in a systematically improvable way. They provide quantitative results that can be compared
directly with experimental data and can be used as a benchmark to test analytical methods. In
previous work [3] we used the diagrammatic determinant Monte Carlo (DDMC) algorithm [4]
to numerically determine the critical temperatureTc and thermodynamic properties of the unitary
Fermi gas atT = Tc. Now we extend our study to temperatures above and belowTc. We study the
temperature dependence of the chemical potential, the energy density and the contact density.
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2. General setup

We consider equal-mass fermions of two species labeled by the spin indexσ = {↑,↓}. The
simplest lattice model for such a system is the Fermi-Hubbard model. Its Hamiltonian in the grand-
canonical ensemble reads

H = ∑
k,σ

(εk −µσ )c
†
kσ ckσ +U ∑

x
c†

x↑cx↑c
†
x↓cx↓, (2.1)

where the first term corresponds to the kinetic part of the Hamiltonian Hkin and the second term
to the interaction partHint. The units are chosen such thatℏ = kB = 2m= 1. We work on a 3d
periodic lattice withL3 sites and lattice spacing set to unity. The discrete dispersion relation reads
εk = 1

m ∑3
j=1(1−cosk j), µσ is the chemical potential andc†

kσ (ckσ ) the time-dependent fermionic
creation (annihilation) operator. The coupling constantU < 0 corresponding to attractive interac-
tion can be tuned so that the scattering length becomes infinite. The corresponding value in the
infinite volume limit isU =−7.914 which is the value we use throughout the calculation.

According to [5] the partition function for this model can bewritten as a series of products
of two matrix determinants (one for each spin species) builtof free finite-temperature Green’s
functions. Ifµ↑ = µ↓ ≡ µ the two determinants are identical, since the spin-dependce enters only
via the chemical potential. Therefore all terms in the series are squares and hence positive, and
the series can be used as a probability distribution for Monte Carlo sampling. In this work we will
limit ourselves to this case of equal populations in the two species.

We set the physical scale viaν = nb3, whereν = 〈∑σ c†
xσ cxσ 〉 is the dimensionless filling

factor, n the particle density andb the lattice spacing. As mentioned above, due to universality
all physical quantities are given in units of the Fermi energy: εF = (3π2ν)2/3 expressed through
lattice quantities. To extract the physical results we needto perform two limits: the thermodynamic
limit to infinite system size and then the continuum limit to zero lattice spacing. The former will
be discussed in detail below. For the continuum limit we varythe chemical potential such that the
filling factor tends to zero. This is equivalent tob→ 0 sinceb ∝ ν1/3. Assuming that discretization
errors are analytic inb, leading order lattice corrections are linear inν1/3.

A detailed description of our numerical setup is given in [3,6, 7]. We use the determinant di-
agrammatic Monte Carlo algorithm as introduced in [4] with several modifications which increase
the efficiency by reducing autocorrelation effects that arepresent in the original setup.

3. Generalisation to finite temperature

Our previous work [3] has been limited to observables calculated at the critical temperatureTc.
To move away from the critical point we need a prescription how to fix the temperature at different
filling factors. The order parameter enabled us to distinguish the lattice critical temperature for any
given value of the lattice chemical potential. We will use this lattice critical temperatureTc(µ) as a
benchmark to fix the temperature scale.

On the lattice an additional artificial length scale is introduced by the lattice spacing. The
simplest approach to vary the temperature is to hold the lattice chemical potential fixed and to vary
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Figure 1: The normalised filling factorν(µ ,T)/ν(µ ,Tc) versus the temperature ratioT/Tc for different
values of the lattice chemical potentialµ . The values are horizontally offset for better comparison.

T. We set the lattice spacing such that it is independent ofT,

b(µ ,T) = b(µ ,Tc) =

(

ν(µ ,Tc)

n(µ ,Tc)

)1/3

. (3.1)

This can also be understood as a temperature-independent renormalisation condition. If we fix
the lattice temperature ratior = T(µ)/Tc(µ) for each value of the lattice chemical potential, we
will move along a line of constant temperatureT = rTc and can perform a linear extrapolation
towards the continuum. For coarse lattices this scheme willbreak down as the presence of the
lattice spacing will change the relation betweenν andT. To check for these lattice artefacts we
consider the filling factor normalised by its value at the critical point, which must be independent of
the lattice chemical potential, see Fig. 1. We observe that for sufficiently low temperaturesT . 3Tc

the values of the filling factor are in good agreement with each other.
In the following we will study the temperature dependence ofthe chemical potential, the en-

ergy per particle and the contact density of the balanced unitary Fermi gas. We make these quan-
tities dimensionless by scaling with appropriate powers ofthe Fermi energyεF = k2

F . Data was
taken below the critical temperature atT/Tc = 0.7 and for six different temperature ratios above
the critical temperature, up toT/Tc = 4.

The continuum extrapolation is a linear fit of a dimensionless observable versusν1/3. The
filling factor ν can show finite-size effects. On small lattices we can expecta higher filling factor
as a consequence of self-interactions due to boundary effects. In agreement with [4] we observe
that the intercept of a linear fit ofν versus 1/L provides a good estimate for the thermodynamic
limit of the filling factor. We performed simulations at several (usually three or four) values of
lattice sizeL. The extrapolationν(1/L → 0) is used to obtainν1/3 andεF in the thermodynamic
limit. These quantities are then used for the continuum extrapolation.

3.1 Temperature dependence of the chemical potential

Figure 2 displays some of the numerical data for the chemicalpotentialµ/εF at different tem-
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Figure 2: The chemical potential versus filling factor for different temperatures together with the linear fits.
The continuum limit corresponds toν → 0.

T/Tc µ/εF χ2/d.o.f. E/EFG χ2/d.o.f. C /ε2
F χ2/d.o.f.

4.0 0.266(6) 7.36 1.09(5) 0.39 0.116(4) 1.16
3.5 0.298(6) 3.47 1.11(5) 0.17 0.108(4) 1.68
3.0 0.330(7) 2.07 0.95(6) 2.48 0.103(4) 0.75
2.5 0.352(6) 2.69 0.90(4) 0.63 0.105(3) 1.56
2.0 0.390(6) 1.75 0.79(5) 0.33 0.100(3) 0.59
1.5 0.413(6) 0.93 0.82(4) 0.68 0.099(2) 0.28
1.0 0.431(8) 2.26 0.55(3) 0.46 0.114(4) 0.57
0.7 0.373(14) 0.85 0.41(5) 2.37 0.114(7) 0.24

Table 1: Continuum limit and goodness of fit for the chemical potential µ/εF , the energy densityE/EFG

and the contact densityC /ε2
F at different temperatures.

peratures together with the linear continuum extrapolations. It is clearly visible that the chemical
potential decreases with increasing temperature. A complete list of the fit results is given in Table 1.
Figure 3 shows the continuum limit of the chemical potentialas a function of the temperature. For
temperaturesT ≤ 2Tc we see excellent agreement with experimental data [8], as well as with sev-
eral other theoretical predictions [9, 10]. In particular,our low-temperature value atT = 0.7Tc

correctly captures the experimentally observed change of the slope of the chemical potential curve.
At high temperatures lattice artefacts become more pronounced and the results start to deviate.

3.2 Temperature dependence of the energy per particle

We express the energy per particleE/EFG in units ofEFG = (3/5)NεF , which is the ground
state energy of the free gas. The energy is composed of the kinetic energyEkin and the interaction
energyEint. It can be shown [3] that on the latticeEkin/N = Ekin/L3ν can be expressed as

Ekin/L3ν = 6

(

1−
∑s〈c

†
xsc(x+ĵ)s〉

ν

)

. (3.2)
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Figure 3: The chemical potentialµ/εF (left) and the energy per particle (right) in the continuum limit versus
the temperatureT/εF . We compare our results (red circles) with experimental data [8] (green solid line),
as well as results obtained with bold diagrammatic Monte Carlo [9] (blue triangles), the Luttinger-Ward
formalism [10] (black dashed line), and the third order virial expansion [11] (orange dot dashed line).

From the structure of this equation it is evident thatEkin/N can have no dependence on the lattice
size L. The same holds for interaction part of the energy. Therefore it is sufficient to consider
the finite-size scaling of 1/εF (which follows directly from the finite-size scaling ofν), while the
values ofEkin/L3ν obtained at different lattice sizes can simply be averaged.Our data confirms
this, since the fits ofEkin/L3ν to a constant always yield acceptableχ2-values.

The results for the continuum limit ofE/EFG at different temperatures are summarised in Ta-
ble 1. A plot of E/EFG in the continuum limit versus the temperature is shown in Fig. 3. As
expected the energy per particle increases with increasingtemperature. As for the chemical po-
tential, we observe excellent agreement with experiment [8] and theory [9, 10] for sufficiently low
temperatures.

3.3 The temperature dependence of the contact

The quantity called contact plays an important role for several universal relations derived by
Tan [12]. It can be interpreted as a measure of the local pair density [13]. One possible definition is
C= m2g0Eint, whereg0 is the physical coupling constant [13, 14]. The contact density C is defined
via C =

∫

C (r)d3r, or for homogeneous systems simplyC = CV. The dimensionless quantity
C /ε2

F = C /k4
F can be expressed asC /ε2

F = (UEint)/(4L3ε2
F) using lattice quantities.

In [15] we have presented preliminary results for the contact density at the critical point. Now
we extend this study to other values of the temperature. For the finite-size scaling we can rewrite
the dimensionless contact density as

C

ε2
F

=
UEint

4L3ε2
F

=
U
4
·

Eint

L3ν
·

ν
ε2

F

∝ ν−1/3(Eint/N). (3.3)

We have already seen thatE/N is independent ofL. Hence this part of the contact density can be
averaged over the different lattice sizes, while the thermodynamic limit for the part proportional to
ν−1/3 follows from the thermodynamic limit of the filling factorν .

The fit results are listed in Table 1. Figure 4 shows the contact density versus the temperature
in the continuum limit. Our result at the two lowest temperature valuesT/Tc = 0.7 andT = Tc
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Figure 4: The contact density in the continuum limit versus the temperature. We compare our results (red
circles) with results obtained with the Luttinger-Ward formalism [16] (black dashed line) and the experi-
mental zero-temperature result [17] with the error margin (green lines).

show excellent agreement with the zero-temperature experimental result [17].
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