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1. Introduction

In his talk “Simulating physics with computers” given at thiest Conference on Physics and
Computation [1], Richard Feynman addressed the questiartdsimulate a quantum mechanical
system with the following proposition:

Let the computer itself be built of quantum mechanical efgsehich obey quan-
tum mechanical laws.

Such a universal quantum simulator is, to a certain exteafjsed by a cold atomic gas, which
can be created and studied experimentally. An atomic gadiugedsuch that the interparticle
distances are large and the patrticles are essentially nehai@d. At very low temperatures quantum
mechanical phenomena become apparent. Hence cold atoseis gan provide a direct realisation
of many basic models in condensed matter physics.

Dilute gases can be easily manipulated with lasers and riadjieéds, which gives experimen-
talists excellent control over many properties, such asraution strength, temperature, trapping
potential and even dimension. At low temperatures the thkda Broglie wavelength is large
compared to the range of the interatomic potential and tlaeteorm of the interaction becomes
unimportant for the macroscopic properties of the systetrerdfore the model of a dilute quan-
tum gas can represent various systems in nature and candewdiéerent areas of physics. For
example it finds application in nuclear physics where resinim the field of cold gases can be
used to describe systems such as low-density neutron noattéen atomic nuclei. The neutrons
in the core of a neutron star are believed to form a fermiooi@ensate that can be studied with the
methods of cold Fermi gases. Even quantum chromodynamluglatemperatures and densities
might have similar physics to these models.

Fermions are particularly interesting, since interactibetween different spin states can re-
sult in a multitude of different regimes [2]. At low energid®e dominant contribution comes from
s-wave scattering which is governed by a single scale cafledtattering length. The regime of
divergent scattering lengié— o is called unitarity. The behaviour of the gas then only deljgen
on two dimensionful parameters: the temperature and thsitgtesf the system. Hence all ther-
modynamic observables must be universal functions of thpéeatureT and the Fermi energy
of the non-interacting gag = (3rn)%3/2m. For instance the critical temperature is simply a
dimensionless number times the Fermi energy, while the aadpotential in units of the Fermi
energy is a purely universal function of the temperature.

Due to the nonperturbative nature of the problem numerjgpt@aches are the only ones that
can give reliable quantitative predictions about the pridge of the Fermi gas in the unitarity limit.
Unlike the analytical approximations they can start diseftom first principles and model the
system in a systematically improvable way. They providentjtegive results that can be compared
directly with experimental data and can be used as a ben&himaest analytical methods. In
previous work [3] we used the diagrammatic determinant Mddarlo (DDMC) algorithm [4]
to numerically determine the critical temperatdreand thermodynamic properties of the unitary
Fermi gas all = T.. Now we extend our study to temperatures above and b&oWe study the
temperature dependence of the chemical potential, thgydensity and the contact density.
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2. General setup

We consider equal-mass fermions of two species labeleddggm indexo = {1,]}. The
simplest lattice model for such a system is the Fermi-Hutbb@awdel. Its Hamiltonian in the grand-
canonical ensemble reads

Z & — Ho) ckackg +U Z chcXTcxicm, (2.1)

k,o

where the first term corresponds to the kinetic part of the Hanian Hyi, and the second term
to the interaction pamti;. The units are chosen such thiat kg = 2m= 1. We work on a 3d
periodic lattice withL® sites and lattice spacing set to unity. The discrete digperslation reads
& = %Z?:l(l—COSkj), Ug is the chemical potential amﬂa (cko) the time-dependent fermionic
creation (annihilation) operator. The coupling constant O corresponding to attractive interac-
tion can be tuned so that the scattering length becomest@fifiihe corresponding value in the
infinite volume limit isU = —7.914 which is the value we use throughout the calculation.

According to [5] the partition function for this model can eitten as a series of products
of two matrix determinants (one for each spin species) ldilfree finite-temperature Green’s
functions. Ifu, =, = u the two determinants are identical, since the spin-depeedters only
via the chemical potential. Therefore all terms in the Sedme squares and hence positive, and
the series can be used as a probability distribution for E@urlo sampling. In this work we will
limit ourselves to this case of equal populations in the tpecges.

We set the physical scale via= nb?, wherev = <20CIaCxa> is the dimensionless filling
factor, n the particle density ant the lattice spacing. As mentioned above, due to univeysalit
all physical quantities are given in units of the Fermi egerg: = (3r°v)%/3 expressed through
lattice quantities. To extract the physical results we rtegeerform two limits: the thermodynamic
limit to infinite system size and then the continuum limit &ra lattice spacing. The former will
be discussed in detail below. For the continuum limit we \theychemical potential such that the
filling factor tends to zero. This is equivalenttie- 0 sinceb [ v1/3. Assuming that discretization
errors are analytic ib, leading order lattice corrections are lineawiti.

A detailed description of our numerical setup is given ind37]. We use the determinant di-
agrammatic Monte Carlo algorithm as introduced in [4] wigheral modifications which increase
the efficiency by reducing autocorrelation effects thatpesent in the original setup.

3. Generalisation to finite temperature

Our previous work [3] has been limited to observables cated at the critical temperatuig.
To move away from the critical point we need a prescriptiow bofix the temperature at different
filling factors. The order parameter enabled us to distisigtiie lattice critical temperature for any
given value of the lattice chemical potential. We will uses flattice critical temperaturg(u) as a
benchmark to fix the temperature scale.

On the lattice an additional artificial length scale is idiwoed by the lattice spacing. The
simplest approach to vary the temperature is to hold thedathemical potential fixed and to vary
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Figure 1: The normalised filling factow(u,T)/v(u,Te) versus the temperature raflg/ T for different
values of the lattice chemical potentjal The values are horizontally offset for better comparison.

T. We set the lattice spacing such that it is independeiit, of

V(IJ,TC)>1/3
n(uvTC) .

This can also be understood as a temperature-independ@rmnaisation condition. If we fix
the lattice temperature ratio= T (u)/Tc(u) for each value of the lattice chemical potential, we
will move along a line of constant temperatufe= rT; and can perform a linear extrapolation
towards the continuum. For coarse lattices this schemebnghk down as the presence of the
lattice spacing will change the relation betweeandT. To check for these lattice artefacts we
consider the filling factor normalised by its value at théical point, which must be independent of
the lattice chemical potential, see Fig. 1. We observe tiragufficiently low temperatureb < 3T,

the values of the filling factor are in good agreement wittheatber.

In the following we will study the temperature dependencéhefchemical potential, the en-
ergy per particle and the contact density of the balanceyniFermi gas. We make these quan-
tities dimensionless by scaling with appropriate powerthef Fermi energyr = k2. Data was
taken below the critical temperature Bt T. = 0.7 and for six different temperature ratios above
the critical temperature, up /T; = 4.

The continuum extrapolation is a linear fit of a dimensioslebservable versus'/3. The
filling factor v can show finite-size effects. On small lattices we can expdutjher filling factor
as a consequence of self-interactions due to boundaryteffat agreement with [4] we observe
that the intercept of a linear fit of versus YL provides a good estimate for the thermodynamic
limit of the filling factor. We performed simulations at seae(usually three or four) values of
lattice sizeL. The extrapolatiorv(1/L — 0) is used to obtairv/® andr in the thermodynamic
limit. These quantities are then used for the continuumagxtiation.

b(u.T) = b(u. Ts) = ( 3.1)

3.1 Temperature dependence of the chemical potential

Figure 2 displays some of the numerical data for the cherpioi@ntialu /e at different tem-
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Figure 2: The chemical potential versus filling factor for differeatiperatures together with the linear fits.
The continuum limit corresponds to— 0.

T/Te|u/ee | x?d.of||E/Erc |x?/d.of|%/e2 | x%d.odf.

4.0 |0.266(6) |7.36 [1.095)|0.39 |0.116(4)1.16
3.5 ||0.2986) |3.47 |1.11(5)[0.17 [0.108(4)1.68
3.0 |03307) [2.07 ||0.95(6)|2.48 |0.103(4)0.75
2.5 | 0.3526) [2.69 ||0.90(4)|0.63 | 0.105(3)1.56
2.0 |03906) [1.75 ||0.79(5)|0.33 | 0.100(3) 0.59
) (4)
) (3)

1.5 [0.4136) |0.93 [0.82(4)|0.68 | 0.099(2)0.28
1.0 [0.4318) |2.26 ||0.55(3)|0.46  |[0.114(4)0.57
0.7 |0.37314)|0.85 [0.41(5)|2.37 |0.114(7)0.24

Table 1: Continuum limit and goodness of fit for the chemical potdniasg, the energy densit /Erg
and the contact densitg /&2 at different temperatures.

peratures together with the linear continuum extrapatatidt is clearly visible that the chemical
potential decreases with increasing temperature. A camfigt of the fit results is given in Table 1.
Figure 3 shows the continuum limit of the chemical poterdgh function of the temperature. For
temperature§ < 2T; we see excellent agreement with experimental data [8], dsawe&vith sev-
eral other theoretical predictions [9, 10]. In particuladr low-temperature value a = 0.7T;
correctly captures the experimentally observed chandgeeaflbpe of the chemical potential curve.
At high temperatures lattice artefacts become more pratemiand the results start to deviate.

3.2 Temperature dependence of the energy per particle

We express the energy per parti@l¢Erg in units of Erg = (3/5)Né&g, which is the ground
state energy of the free gas. The energy is composed of thdkienergyEyi, and the interaction
energyEi. It can be shown [3] that on the latti&&i, /N = Eyin/ L3v can be expressed as
3 s(CisCpu K )

y .

Exin/L3v =6 (1— (3.2)
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Figure 3: The chemical potentigl/er (left) and the energy per particle (right) in the continuumt versus
the temperatur@ /ec. We compare our results (red circles) with experimentad i@k (green solid line),
as well as results obtained with bold diagrammatic MontddCi@] (blue triangles), the Luttinger-Ward
formalism [10] (black dashed line), and the third orderaligxpansion [11] (orange dot dashed line).

From the structure of this equation it is evident tBgh /N can have no dependence on the lattice
sizeL. The same holds for interaction part of the energy. Theeefois sufficient to consider
the finite-size scaling of fgx (which follows directly from the finite-size scaling of), while the
values ofEyi,/L3v obtained at different lattice sizes can simply be averagedr data confirms
this, since the fits o /L3v to a constant always yield acceptaligvalues.

The results for the continuum limit & /Erc at different temperatures are summarised in Ta-
ble 1. A plot of E/Efrg in the continuum limit versus the temperature is shown in Big As
expected the energy per particle increases with incredasimgerature. As for the chemical po-
tential, we observe excellent agreement with experimdrdril theory [9, 10] for sufficiently low
temperatures.

3.3 The temperature dependence of the contact

The quantity called contact plays an important role for sgveniversal relations derived by
Tan [12]. It can be interpreted as a measure of the local eaisitly [13]. One possible definition is
C = mPgoEint, Wheregy is the physical coupling constant [13, 14]. The contact iy is defined
via C = [%(r)d3r, or for homogeneous systems sim@y= V. The dimensionless quantity
/et =€ /kt can be expressed &/g2 = (UEjy)/(4L3€2) using lattice quantities.

In [15] we have presented preliminary results for the cardaasity at the critical point. Now
we extend this study to other values of the temperature. Heofinite-size scaling we can rewrite
the dimensionless contact density as

UE; U E 1%
g% = T;;é =7 L%r:; i O v Y3(En/N). (3.3)
We have already seen thafN is independent of. Hence this part of the contact density can be
averaged over the different lattice sizes, while the thelynamic limit for the part proportional to
v—1/3 follows from the thermodynamic limit of the filling factar.

The fit results are listed in Table 1. Figure 4 shows the comtawsity versus the temperature

in the continuum limit. Our result at the two lowest temperatvaluesT /T. = 0.7 andT = T
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Figure 4: The contact density in the continuum limit versus the terapge. We compare our results (red
circles) with results obtained with the Luttinger-Wardrfalism [16] (black dashed line) and the experi-
mental zero-temperature result [17] with the error margneén lines).

show excellent agreement with the zero-temperature erpetal result [17].
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