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We formulate the Schwinger-Dyson (SD) equation in a finite-size space-time for the study of
the correction to the finite-size hyperscaling relation. By using data obtained from the finite-
volume SD equation, we show that the mass anomalous dimension, when identified through the
finite-size hyperscaling relation neglecting the mass corrections as is often done in the lattice
analyses, yields a substantially lower value than its value at the infrared fixed point. From the
analytical expression of the solution of the ladder SD equation, we identify the form of the leading
correction to the hyperscaling relation. We also applied the finite-volume SD equation to the
chiral-symmetry-breaking phase and found that when the theory is close to the critical point such
that the dynamically generated mass is much smaller than the explicit breaking mass, the finite-
size hyperscaling relation is still operative.
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1. Introduction

Technicolor (TC) model [1, 2] is an attractive candidate for the dynamical origin of the Elec-
troweak symmetry breaking. Especially, a model based on dynamics which has an approximate
infrared fixed point (IRFP) with large mass anomalous dimension (so-called Walking Technicolor
model [3, 4]) is considered to be phenomenologically viable. Large N f QCD, which is an SU(3)
gauge theory with many number (N f ) of massless fermions, is expected to possess such prop-
erty. From the analysis based on the Schwinger-Dyson (SD) equation with the two-loop running
coupling, the critical number of flavor, above which the chiral symmetry restores and the theory
possesses an IRFP, is estimated as Ncr

f ≅ 11.9. Since a viable Walking TC model resides just below
the critical point, precise determination of Ncr

f by using fully non-perturbative method, like lattice
gauge theory, is of great importance.

One of the methods to judge whether a theory is infrared conformal or not from lattice data is
using the finite-size hyperscaling relation of a mass-deformed conformal gauge theory [5]:

M = L−1 f (x) . (1.1)

Here, M is a physical quantity such as meson mass or decay constant, L is the size of space and
time, and f is some function of scaling variable x. x is defined as x ≡ L̂ m̂1/(1+γ∗m)

0 , where m0 is
the bare fermion mass and γ∗m is the mass anomalous dimension at the IRFP. Here, we introduced
dimensionless quantities, L̂ ≡ LΛ and m̂0 ≡ m0/Λ, where we take Λ as the UV scale at which the
infrared conformality terminates. (This Λ is same as the one defined in Ref. [6]) In the case of
lattice simulations, it is usually taken to be the inverse lattice spacing a−1. Since the above scaling
relation is satisfied only when the theory is infrared conformal, one can judge whether a candidate
theory possesses an IRFP or not by measuring the low-energy quantities on the lattice for various
combination of input values of L̂ and m̂0, then checking whether Eq. (1.1) is satisfied for a certain
value of γ∗m.

There are a couple of questions to be raised here regarding use of this finite-size hyperscaling
relation for the study of infrared conformality: How small m0 has to be so that the hyperscaling
relation is approximately satisfied? (Remember that the bare fermion mass, m0, which is introduced
as a probe, itself necessarily breaks the infrared conformality of the original theory.) What is the
form of correction if it is not small enough? When the theory in question does not have an IRFP
(namely, in the phase where the chiral symmetry is spontaneously broken) in the first place, how
and how much is the hyperscaling relation violated?

SD equation is a useful tool for studying such questions. From the solution of the SD equation
with a certain approximation, for a given theory (in the continuum, infinite-volume space-time), we
know whether the chiral symmetry is broken or not, and the value of γ∗m as well. As we will explain
later, the SD equation can be formulated in a finite-volume space-time, and numerical calculations
can be easily done for a wide range of parameter space of (L̂, m̂0). By doing finite-size hyperscaling
analysis with using "data" generated by solving the finite-volume SD equation, and comparing the
result obtained from that analysis to the “answer" which is known from the solution of the infinite-
volume SD equation, we can study the reliability of the finite-size hyperscaling analysis itself in a
self consistent manner. To a certain extent, even analytical understanding can be obtained regarding
the finite-mass correction to the hyperscaling relation, which we will mention later as well.
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2. Hyperscaling analysis through the SD equation with a finite-size space-time

SD equation is the self-consistent equation for the full fermion propagator, iS−1
F ≡ A(p) /p−

B(p). To put the SD equation in a finite space-time, all one needs to do is to introduce the discrete
momentum variables: p̃i = 2πni

L , where i indicates the i-th component of the momentum variable,
and ni’s are integers which label discrete momentum variables [7].

Ã(p̃) = 1+
1
L4 ∑̃

k

C2 ḡ2((p̃− k̃)2)Ã(k̃)
k̃2Ã(k̃)2 + B̃(k̃)2

·

[
(p̃ · k̃)

p̃2(p̃− k̃)2
+2

{
p̃ · (p̃− k̃)

}{
k̃ · (p̃− k̃)

}
p̃2(p̃− k̃)4

]
, (2.1)

B̃(p̃) = m0 +
1
L4 ∑̃

k

3C2 ḡ2((p̃− k̃)2)
k̃2Ã(k̃)2 + B̃(k̃)2

B̃(k̃)
(p̃− k̃)2

. (2.2)

Here, C2 is the quadratic Casimir, and ḡ((p−q)2) is the running coupling constant. The improved
ladder approximation is adopted in the above expression. We use the following form of the running
coupling as an approximation of the two-loop running coupling of the large N f QCD:

α(µ2) ≡ ḡ2(µ2)
4π

= α∗ θ(Λ2 −µ2). (2.3)

Here, α∗ is the value of the two-loop running coupling at the IRFP. The mass function, Σ(p̃) ≡
B(p̃)/A(p̃), is obtained from the solutions of Eqs. (2.1) and (2.2), then so called the “pole mass,"
mP, which is defined by Σ(

√
p̃2 = mP) = mP can be calculated from it. Since it is known, from the

study with the Bethe-Salpeter equation [8], that mP is proportional to meson masses, we use mP as
low-energy physical quantity which appears in the hyperscaling relation.

2.1 Analysis in the conformal phase

In this subsection, we study SU(3) gauge theory with N f = 12 fundamental fermions. In the
context of the SD equation with the improved ladder approximation, this theory is in the conformal
window. The top panel of Fig. 1 shows values of mP/Λ (horizontal axis) for various values of m0/Λ
(vertical axis) and LΛ, which were obtained from numerical calculation of the finite-volume SD
equation. Note that we can obtain data only for mP/Λ > O(0.1) because the infrared cutoff coming
from the size of space-time exists. We use these data to plot mPL as a function of x to see whether
the finite-size hyperscaling relation is satisfied, and if it does, what is the value of γ obtained from
the analysis. In the bottom of Fig. 1, finite-size hyperscaling plots for SU(3) gauge theory with
12 fundamental fermions, in which mPL is plotted for various values of x and LΛ. The left panel,
which is the case of γ = 0.5, shows good alignment of data, meanwhile, the right panel, which is
the case of γ = 0.8, shows poor alignment compared to the case of γ = 0.5. We should note that,
in the framework of the ladder SD equation analysis, the value of the mass anomalous dimension
at the IRFP for N f = 12 SU(3) gauge theory is γ∗m = 1−

√
1−α∗/αcr ≅ 0.8. Here, αcr = π

3C2
.

Therefore, naive expectation is that the plot should show good scaling behavior for γ = 0.8, rather
than for γ = 0.5. This shift of γ actually comes from the correction to the hyperscaling relation
due to the violation of the infrared conformality caused by the introduction of non-zero fermion
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Figure 1: Top: Values of mP/Λ (horizontal axis) for various values of m0/Λ (vertical axis) and LΛ (indicated
by different symbols) for SU(3) gauge theory with 12 fundamental fermions. Dashed curve is mP as a
function of m0 which is obtained from the numerical solution of the SD equation in the infinite space-time.
Bottom: Finite-size hyperscaling plots for SU(3) gauge theory with 12 fundamental fermions for the case of
γ = 0.5 (left panel) and 0.8 (right panel), respectively

mass [7]. This can be understood from the relation between m0 and mP which is obtained from the
analytic solution of the SD equation:

m0

Λ
= ξ

[
Γ(1− γ∗m)

Γ(2−γ∗
2 )2

(mP

Λ

)1+γ∗m
+

Γ(−1+ γ∗m)
Γ( γ∗

2 )2

(mP

Λ

)3−γ∗m
]

. (2.4)

It is obvious that if we drop the second term in the RHS of this equation, it reduces to the hyper-
scaling relation in the infinite volume:

M ∼ m1/(1+γ∗m)
0 . (2.5)

Therefore, the second term should be identified as the leading correction to the hyperscaling re-
lation. The correction is large for a large value of mP/Λ. In Fig. 2, we plot the effective mass
anomalous dimension, γeff

m , which includes effect of this mass correction. (See Ref. [7] for more
detailed explanation.) Note again that since the significance of the correction term is different
for different values of mP, the effective mass anomalous dimension becomes a function of mP. In
Fig. 2, together with N f = 12 case, γeff

m for N f = 13,14,15 and 16 are also plotted. From this figure,
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Figure 2: Effective mass anomalous dimension as a function of mP/Λ for SU(3) gauge theories with 12, 13,
14, 15 and 16 fundamental fermions.

we can understand the fact that the hyperscaling plot in Fig. 1 shows good alignment for γm = 0.5.
It is because the data used for the analysis is those with rather heavy input masses. (Remember that
mP/Λ > O(0.1).)

2.2 Analysis in the broken phase

Here, by the same procedure used in the previous subsection, we study the finite-size hyper-
scaling relation in theories with spontaneous chiral symmetry breaking. In the case of theories with
spontaneous chiral symmetry breaking, mass gap exists even in the chiral limit, and therefore an
IRFP is only approximate. Here, we show two examples: one is SU(3) gauge theory with N f = 9,
and the other is that with N f = 11. The former is an example of a theory which is far away from
the conformal window, in which the infrared conformality is expected to be largely violated. The
latter is an example of a theory which resides close to the conformal window, and the breaking of
the infrared conformality due to the spontaneous chiral symmetry breaking is expected to be small.

In Fig. 3, we show the hyperscaling plots for SU(3) gauge theory with 9 fundamental fermions.
As we expected, since the infrared conformality is largely broken due to the spontaneous chiral
symmetry breaking, large violation of hyperscaling relation is observed. Note that the dynamically
generated mass for N f = 9 is mD/Λ ≅ 0.58, where mD is the value of mP obtained by the spon-
taneously broken solution of the ladder SD equation in the chiral limit m0 ≡ 0. This is compared
with the typical values in Fig. 3: mP/Λ = 0.58−0.77 for LΛ = 30.

A similar plot for SU(3) gauge theory with 11 fundamental fermions is given Fig. 4. We show
the result for γ = 1.0, with which we found data are best aligned each other. Again, as we expected,
since the theory is close to the chiral restoration point, and the effect of the spontaneous chiral
symmetry breaking is small, the violation of hyperscaling relation is small. Note that mD/Λ ≅ 0.05
for N f = 11, while typical values of mP in Fig. 4 are mP/Λ = 0.28−0.69(≫ mD/Λ) for LΛ = 30.
Of course, one can see that there is a small amount of misalignment. However, let us imagine
those were data obtained from lattice simulations, and each data point has, say, a few percent
error bar, in which case, the data might look consistent with conformal hyperscaling. Therefore,
when one obtained data which look consistent with conformal hyperscaling with a large mass
anomalous dimension, there is a possibility that the theory is exactly the one the technicolor model
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Figure 3: Values of mPL obtained from the finite-volume SD equation as a function of x ≡ LΛ(m0/Λ)1/(1+γ)

for γ = 0,0.5,1.0,1.5 and 2.0 in SU(3) gauge theory with 9 fundamental fermions. Data for LΛ =
12,16,20,25 and 30 are plotted as different symbols.
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Figure 4: Values of mPL obtained from the finite-volume SD equation as a function of x ≡ LΛ(m0/Λ)1/(1+γ)

for γ = 1.0 in SU(3) gauge theory with 11 fundamental fermions. Data for LΛ = 12,16,20,25 and 30 are
plotted as different symbols.

favors, namely the dynamics with spontaneous chiral symmetry breaking at hierarchically small
scale compared to Λ with large anomalous dimension.

3. Summary and Discussion

We formulated the SD equation in a finite-size space-time for the study of the correction to the
finite-size hyperscaling relation. By using data obtained from the finite-volume SD equation, we
showed that the anomalous dimension, when identified through the finite-size hyperscaling relation
neglecting the mass corrections as is often done in the lattice analyses, yields a substantially lower
value of the mass anomalous dimension than its value at the IRFP. From the analytical expression
of the solution of the ladder SD equation, we identified the form of the leading correction to the
hyperscaling relation. We also applied the finite-volume SD equation to the chiral-symmetry-
breaking phase and found that when the theory is close to the critical point such that the dynamically
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generated mass is much smaller than the explicit breaking mass, the finite-size hyperscaling relation
is still operative.

Here, we summarize what we learned from the present study for different cases.
Case #1: When the theory is deep in the hadronic phase, hyperscaling relation is totally violated,
therefore, there is no confusion.
Case #2: When the theory is in the hadronic phase, but close to the edge of the conformal window,
one might observe approximate scaling behavior, and conclude that the theory is IR conformal.
Case #3: When the theory is in the conformal window, and data are taken in a wide range of
input bare mass, one might observe misalignment in the hyperscaling plot because effective mass
anomalous dimension is different for different mass regions.
Case #4: When the theory is in the conformal window, and data are taken in a rather small range
of large bare mass region, one might observe good alignment in the hyperscaling plot, and obtain
an effective value of γm. However, it is very possible that mass corrections to the hyperscaling
relations for different physical quantities are different, so one might obtain non-universal values
of γm for hyperscaling plots with different physical quantities. Therefore, when the lattice data
show a good scaling for each physical quantity, but inconsistent values of γ (which means global
fit with universal value of γm gives bad χ2/dof), it is worth doing fitting with a universal γm +
SD-inspired mass correction term for each physical quantity. It could significantly reduce χ2/dof,
which actually happened when we analyzed our lattice data for N f = 12 SU(3) gauge theory [9].
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