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We report on numerical simulations of one dimensional maximally supersymmetric SU(N) Yang-

Mills theory, by using the lattice action with two exact supercharges. Based on the gauge/gravity

duality, the gauge theory corresponds to N D0-branes system in type IIA superstring theory at

finite temperature. We aim to verify the gauge/gravity duality numerically by comparing our

results of the gauge side with analytic solutions of the gravity side. First of all, by examining the

supersymmetric Ward-Takahashi relation, we show that supersymmetry breaking effects from the

cut-off vanish in the continuum limit and our lattice theory has the desired continuum limit. Then,

we find that, at low temperature, the black hole internal energy obtained from our data is close to

the analytic solution of the gravity side. It suggests the validity of the duality.
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1. Introduction

Gauge/gravity duality asserts an equivalence between strongly coupled gauge theory and the
classical gravity on curved space, which was originally stated as AdS/CFT correspondence which
includes the supersymmetry by Maldacena[1]. From the duality, we expect that strongly coupled
gauge theories, which are usually difficult to calculate by hand, can be analytically solved via the
gravity side. So, there are many applications from the context, getting over the barrier among
fields (for example, elementary particle physics, cosmology, condensed matter physics and so on).
However, it is a conjecture and therefore verifying the duality in some way is desirable.

We aim to verify the gauge/gravity duality from lattice simulations in one dimensional super-
symmetric Yang-Mills theory with sixteen supercharges. The theory is obtained by dimensional
reduction from 10dN = 1 SYM (or 4dN = 4 SYM). Actually, we introduce temperature into
the theory by imposing the anti-periodic boundary conditions on fermions. Based on the duality,
the gauge theory corresponds to N D0-branes system in type IIA superstring theory at finite tem-
perature. In particular, at low temperature, the gauge theory becomes strong coupling and using
analytic techniques to examine the dual black hole physics from gauge theory become difficult.
So, we use the lattice gauge theory to analize the gauge theory. From comparisons between lat-
tice results and analytic solutions of the gravity side, we discuss the validity of the gauge/gravity
duality.

There are two previous works about numerical simulations of the 1d maximally supersym-
metric Yang-Mills theory: non-lattice simulations done by Nishimura et al.[2, 3, 4, 5] and lattice
simulations done by Catterall and Wiseman[6]. Supersymmetry is broken by the cut-off effects
in their regularized theories. Nevertheless, both results are consistent with the gravity side from
UV-finiteness of 1d gauge theories. In contrast, we employ the lattice formulations with a few
supersymmetric charges on the lattice [7, 8], which have been recently developing, in particular,
our lattice theory has two exact supercharges even on the lattice. We expect that the lattice theory
has some advantages, for example, clear signals etc., thanks to the exact charges, in high accuracy
verifications of the duality.

In section 2 we explain our lattice theory and then in section 3 we see some details of simu-
lation techniques. In section 4 we show that the lattice theory has the correct continuum limit by
computing the supersymmetric Ward-Takahashi relation. In section 5 we show the internal energy
of the dual black hole obtained from gauge theory side as an evidence of the gauge/gravity duality.

2. 1d SYM with 16 supercharges

The supersymmetricSU(N) Yang-Mills theory with sixteen supercharges is a gauge theory in
which a gauge field of the temporal directionA1 interacts with nine scalar fieldsXi(i = 1, · · · ,9)
and real sixteen fermionsψα (α = 1, · · · ,16). The continuum action is given by

Scont =
N
λ

∫
dt tr

{
1
2
(D1Xi(t))

2− 1
4
[Xi(t),Xj(t)]

2

+
1
2

ψT(t)D1ψ(t)+
1
2

ψT(t)γi [Xi(t),ψ(t)]

}
, (2.1)
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whereλ is the ’t Hooft coupling constant. Here, all fields are expanded asϕ(t) = ∑N2−1
a=1 ϕa(t)Ta

by gauge group generatorsTa of theSU(N) group1 . Also, the covariant differential operatorD1

is defined throughD1ϕ = ∂1ϕ + i[A1,ϕ]. Theγi are real symmetric matrices which satisfy the nine
dimensional Euclidean Clifford algebra.

The realization of supersymmetry on the lattice has been a difficult issue due to the lack of
Leibniz rule on the lattice for a long time. However, recently, Sugino proposed a lattice formu-
lation of maximally supersymmetric Yang-Mills theory with two exact supercharges[7] from the
topological twisted version [9]. In the twisted theory, the original action eq.(2.1) can be rewritten
as a closed form,Scont = Q+Q−(...), using two superchargesQ± whereQ2

± are gauge transfor-
mations. From the nilpotency ofQ± up to gauge transformations, we can see that the action is
invariant underQ±-transformations, without the obvious use of Leibniz rule.

Let us consider one dimensional lattice of the sizeL with the periodic boundary condition.
Scalars and fermions are defined on sites labeled byt = 0, · · · ,L−1 while a gauge field is defined
on links through the link fieldU1 to realize the exact gauge invariance. Our lattice action is defined
by

S = Q+Q−
N

2λ0

L−1

∑
t=0

tr

[
−i

3

∑
i=1

Bi(t)Φi(t)−
1
3

3

∑
i, j,k=1

εi jkBi(t)[B j(t),Bk(t)]

−
4

∑
µ=1

ψ+µ(t)ψ−µ(t)−
3

∑
i=1

ξ+i(t)ξ−i(t)−
1
4

η+(t)η−(t)

]
, (2.2)

whereλ0 is a dimensionless ’t Hooft coupling constant defined byλ0 = λa3 with the lattice spacing
a. Here,Bi ,C,φ± andψ±µ ,η±,ξ±i are some combinations of original scalars and those of fermions,
respectively (our notation follows [7], or see [13]). LatticeQ±-transformations are defined over the
new variables2,

Q±U1(t) = iψ±1(t)U1(t), Q±ψ±1(t) = iψ±1(t)ψ±1(t)± i∇1φ±(t), · · · . (2.3)

From the definitions above,Q2
± are gauge transformations with gauge parametersφ±,C,

Q2
+ = δ−iφ+ , Q2

− = δiφ− , {Q+,Q−}= δ−iC, (2.4)

whereδω is a gauge transformation with the parameterω. As a result,Q±-invariance is realized
even on the lattice, because of eq.(2.2) and the exact gauge invariance of the lattice theory.

The continuum limit is realized by takingλ0 to zero while keeping a typical scale of this
system (e.g., the dimensionful ’t Hooft couplingλ ). Also, the lattice action has no doublers because
(D†

0D0)(p) = 4sin2(p1/2) whereD0 is the free limit of the lattice Dirac operator.
To introduce temperature, we change the boundary condition on fermions from periodic one

to anti-periodic one, while keeping that on bosons,

U1(t) =U1(t +L), Xi(t) = Xi(t +L), (i = 1, · · · ,9), (2.5)

ψα(t) =−ψα(t +L), (α = 1, · · · ,16), (2.6)

where temperature is defined byT = 1/(La). Temperature breaks all supersymmetries explicitly
and, of course,Q±-invariance. Hereafter,T denotes a dimensionless temperatureT/λ 1/3.

1The generatorsTa satisfy the normalization condition, tr(TaTb) = δab.
2The transformations here are those forU1 andψ±1 (for the others, see [13] ).
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3. Simulation details

We use the standard Hybrid Monte Carlo method. But, there are two additional difficulties in
our fermion sector: the 4-fermi interaction and the pfaffian, as explained below.

After Q±-transformations, the action eq.(2.2) includes a cut-off order 4-fermi interaction as

Q+Q−tr(ψ+1ψ−1)∼ tr
(
{ψ+1,ψ−1}2

)
−→ tr

(
σ2+σ {ψ+1,ψ−1}

)
. (3.1)

For the 4-fermi interaction, we introduce an auxiliary fieldσ to write it as the third term in eq.(3.1).
We treat tr(σ2) as a part of the boson action and tr(σ{ψ+1,ψ−1}) as a part of the fermion bilinear
SF = ∑t ψT(t)Dψ(t), without integratingσ . So, we regard 10+1 bosonic fields,U1,A2, · · · ,A10,σ ,
as configurations generated by HMC method.

The integration of fermions becomes the pfaffian, pf(D), which generally takes complex val-
ues. We treat the absolute value and the complex phase of the pfaffian, individually, to avoid
the sign problem. The absolute value can be given as an integral by pseudo fermionφ since
|pf(D)|= det(D†D)1/4, and the 4th root is approximately by the rational expansion,

|pf(D)|=
∫

Dφ†Dφ exp

{
−

L−1

∑
t=0

φ†(t)

[
α0+

M

∑
i=1

αi

D†D+βi

]
φ(t)

}
, (3.2)

where the orderM and the coefficientsαi ,βi of the approximation are determined from the range
of D†D’s eigenvalues measured in the simulations. We compute inversions ofD†D with shifts βi

in eq.(3.2) by using multi-mass shifted solver. Also, for the phase of pfaffian, we use the phase
quench, or use the phase reweighting method if we want to include the effect in the results.

For T ≫ 1, HMC method stably works and we can obtain sufficient statistics. However, as
temperature decreases, at some temperature (which actually depend onN), the magnitudes of scalar
fields monotonically increase against Monte Carlo trajectories and therefore the thermalization
does not occur. This instability is related to the classical flat direction of the boson action. To
avoid the instability, in parameter regions where run-away modes to the flat direction appear, we
introduce a mass term of scalar fields,

Smass= µ2
0

N
2λ0

L−1

∑
t=0

9

∑
i=1

tr
(
X2

i (t)
)
, (3.3)

whereµ0 is a dimensionless mass. Hereafterµ denotes a dimensionless massµ/λ 1/3.

4. Supersymmetric Ward-Takahashi relation

Supersymmetry is broken by the lattice cut-off. In the classical continuum limit, the break-
ing effects by the cut-off identically vanish. By contrast, in the quantum theory, it is not so clear
whether the breaking effects generally vanish in the continuum limit because of ultra violet diver-
gences and non-perturbative effects. Fortunately, the 1d gauge theory is UV-finite and any opera-
tors which break supersymmetry are not generated radiatively, so our lattice theory has the correct
continuum limit, at least, in the perturbation theory. However, we do not know a-priori whether
the similar argument is possible beyond the perturbation theory. Also, we must divide the cut-off
effects from the other breaking sources, the temperature and the mass term, eq.(3.3).
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Figure 1: The ratio<∂1J1(t)Y(0)>
<Y(t)Y(0)> is plotted against the temporal direction forN = 3 (Left) andN = 4 (Right)

on theL = 16 lattice. The labelss1, · · ·, s16 denote the spin indices of supercurrentJ1. Red lines represent
the fitted masses obtained by fitting plateaus. They are consistent with the mass,µ2 (black lines) within
statistical errors. Deviations from the plateaus near the lattice boundary correspond to the contact terms.

For the issue, Kanamori and Suzuki used a method which can extract only the cut-off effects
in lattice simulations of 2dN = (2,2) SU(2) SYM[10]. The method is a simple one measuring of
the partially conserved SUSY current on the lattice. We use the same method and check whether
the cut-off effects vanish in the continuum limit without relying on the perturbation theory.

For the continuum theory with mass term, we have the partially conserved supersymmetric
Ward-Takahashi relation,

⟨∂1J1α(t)O(s)⟩ = µ2⟨Yα(t)O(s)⟩−δ (t −s)⟨QαO(s)⟩ , (4.1)

whereO is an arbitrary operator andQα(α = 1, · · · ,16) are supercharges which generate super-
symmetric transformations. HereJ1 andY are the supercurrent and the breaking term from mass
term, respectively, which are defined as

J1α =
N
λ

[
9

∑
i=1

16

∑
β=1

(γi)αβ tr
(
ψβ D1Xi

)
+

1
2

9

∑
i, j=1

16

∑
β=1

(γiγ j)αβ tr(ψβ [Xi ,Xj ])

]
, (4.2)

Yα =
N
λ

9

∑
i=1

16

∑
β=1

(γi)αβ tr
{

Xiψβ
}
. (4.3)

In the continuum theory, the supersymmetric Ward-Takahashi relation, eq.(4.1), holds even at
finite temperature. It means that we can find the cut-off effects by measuring a lattice counterpart
of the relation. Actually, we compute the following ratio,

< ∇S
1J1α(t)Yβ (0)>

<Yα(t)Yβ (0)>
, for α,β = 1, · · · ,16, (4.4)

where∇S
1 is the symmetric covariant difference operator. Here we only use the forward covariant

difference operator in the lattice definition of the supercurrentJ1. Also, for fixedα, β is uniquely
determined because correlators in the denominator with otherβ are nearly zero, that is, the ratio is

5
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Figure 2: The internal energy of black hole, normalized byN2. Data points(red circles) are our results for
N = 14. The dashed green line corresponds to the result obtained by high temperature expansion at next to
leading order in the large N limit. The dashed blue curve represents the analytic solution of the gravity side.

meaningless. If the cut-off effects vanish in the continuum limit, the ratio must beµ2 in the limit,
from eq.(4.1).

In Figure1, we plot the ratio forN = 3 andN = 4 with T = 1, µ2 = 0.01 and the lattice size
L = 16. The horizontal axis represents the temporal direction. The corresponding lattice spacing
is a = 0.0625 in the unit ofλ = 1. For both cases, clear plateaus are observed within statistical
errors. We perform the constant fit for the plateaus. The obtained values are consistent withµ2 =

0.01 within the statistical errors. The result suggests that cut-off effects mostly vanish near the
continuum limit and our lattice theory has the correct continuum limit beyond the perturbation
theory for, at least,T = 1 of N = 3 andN = 4.

5. Internal energy

The internal energy of the black hole, associated with the black hole thermodynamics, is one
of simple examples to test the gauge/gravity duality. In the gravity side, the internal energyE is
related to temperatureT through an analytic formula[11],

1
N2

(
E

λ 1/3

)
= c

(
T

λ 1/3

)14/5

, c=
9
14

{
413152

(π
7

)14
}1/5

= 7.41· · · . (5.1)

We computeE =− ∂
∂β lnZ, whereβ is the inverse temperature, from our data and compare it with

the above analytic formula.
In Figure2, we show the internal energy versus temperature forN = 14 andµ2 = 0. We used

two different lattice sizes,L = 8 for T ≥ 1 andL = 16 for T < 1. For high temperature, we see
that our data and the result obtained by high temperature expansion at next to leading order[12]
agree as expected. However, as temperature decreases, our data departs from the curve of the high
temperature expansion aroundT = 1.5 and it is smoothly close to the analytic curve of the gravity
side, eq.(5.1). This suggests the validity of the gauge/gravity duality in this system.
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In N = 14, HMC-runs are stable forT ≥ 0.5 without the mass term, however, forT < 0.5, the
instability from the flat direction occurs. So, we must useN > 14 to explore possible further lower
temperature. Also, simulations with different lattice spacings at same temperature are necessary to
take the continuum limit. Such simulations to obtain high accuracy results are in progress[14].
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