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SO(4) gauge theory with two fermions Ari Hietanen

1. Introduction

Understanding the phase diagram of strongly interacting theories will unleash a large number
of theories of fundamental interactions useful to describe the very fabric of the bright and dark
side of the universe [1]. To gain a coherent understanding of strong dynamics besides the SU(N)
gauge groups [2, 3], one should also investigate the orthogonal, symplectic and exceptional groups.
SO(N) and SP(2N) phase diagrams were investigated with analytic methods in [4], while the excep-
tional ones together with orthogonal gauge groups featuring spinorial matter representations were
studied in [5]. So far lattice simulations have been mostly employed to explore the phase diagram
of SU(N) gauge theories while a systematic lattice analysis of the smallest symplectic group was
launched in [6]. Here we move forward by analyzing on the lattice the dynamics of the SO(4)
gauge group with two Dirac fermions in the vector representation of the group. The choice of
this specific orthogonal gauge theory is based on the following theoretical and phenomenological
considerations:

e It is expected to be below or near the lower boundary of the conformal window [4, 7].

e If used for technicolor [8, 9] the simplest choice of the hypercharge assignment compatible
with gauge and Witten anomalies leads to integer electric charges for the composite states.
In Minimal Walking Technicolor [2, 10, 11], for example, one achieves integer charged com-
posite states but also to doubly charged heavy leptons.

o The technicolor theory leads to a weak isotriplet with the neutral member an ideal dark matter
candidate [4, 7], the (Isotriplet Technicolor Interactive Massive Particle) iTIMP. This state is
a pseudo Goldstone and therefore can be light with respect of the electroweak scale making
it an ideal candidate to resolve some of the phenomenological and experimental puzzles [7].
The first model featuring composite dark matter pions appeared in [12, 13] and the first study
of technipion dark matter on a lattice appeared in [6].

Due to the reality of the fermion representation the quantum global symmetry group is SU(4)
expected to break spontaneously to SO(4), yelding nine Goldstone bosons. Once gauged under
the electroweak theory three are eaten by the SM gauge bosons. Six additional Goldstone bosons
form an electroweak complex triplet of technibaryon with the neutral isospin zero component to be
identified with the iTIMP of [7].

SO(4) is a semi simple group, SO(4) = SU(2)®SO(3), and it has a non-trivial center Z,. The
two-loop B-function of the theory does not have an infrared fixed point. The theory is asymptoti-
cally free and can display chiral symmetry breaking. However, we would like to confirm this with
lattice simulations, since there is also the possibility that the theory is walking [4, 7, 14, 15, 16].

Previous studies of the pure gauge part behavior for orthogonal groups on the laftice were done
in [17]. As a natural first step, we have studied the phase diagram in the (f,mqg)-plane to find the
relevant region of parameter space to simulate. We have determined the zero PCAC-mass line as
well as the strong coupling bulk phase transition line. In addition, we have studied pseudo scalar
and vector meson masses and found indication of chiral symmetry breaking.
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Figure 1: Left: The plaquette expectation value as a function of the lattice coupling 8 for different bare
masses. The jump around 3 = 4.8 indicates the strong coupling bulk phase transition. Right: PCAC-mass
quark mass as a function of bare mass. The lattice volume is V = 16 x 83 in both panels.

2. Lattice study

We use Wilson plaquette action with Wilson fermions on the lattice:

S=S,+S; 2.1)
Se=B Y, (1-Tr[Uu(x)Uy(x+2u)Uj(x+2y)U (x)]) 2.2)
X,UFV
1
Sp=—5 X W) [(1=%) Uu(®)8ya,+ (14 2) Up(x—0)8yia, | W0, 23)
X,y 0

where B = 8/g? is the lattice coupling, mq is the bare fermion mass and U, are the real link
variables.

To map out the interesting region of parameter space, we have performed simulations on rela-
tively small volumes V = 16 x 83. The bulk phase transition can be easily located by a discontinuity
in the plaquette expectation value. See left panel of Fig. 1.

The fermion mass is measured using the axial Ward identity (PCAC mass):

MpCAC = ,152 % 9{/‘;123 ; (2.4)
where the currents are
Ves(xo) =a® Y (a(x)%ysd(x)i(0) 5 (0))
X1,X2,X3
Vep(xo) =a’ Y (ia(x)ysd(x)ia(0)ysd (0)). (2.5)
X1,X2,X3
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Figure 2: The phase diagram showing the bulk phase transition and the zero fermion mass line for V =
16 x 83.
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Figure 3: Left: PCAC-mass as a function of bare mass. The finite volume effects are under control. Right:
Pseudo scalar and vector meson mass as a function of PCAC-mass. At low masses the finite volume effects
are large, and smaller volume, V = 64 X 123, results are plagued with lattice artefacts.
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Figure 4: Left: The effective mass plot for with two different volumes for § = 7. Right: PCAC-mass and a
pseudo scalar meson mass as a function of spatial lattice size for bare mass my =0.2 and f = 7.

We are especially interested in finding the critical line, along which the fermion mass vanishes. For
a small mass extrapolation see right panel of Fig 1. The resulting phase diagram is given in Fig. 2
The meson masses are estimated calculating time slice averaged zero momentum correlators

ci (1) = YT ([, 0)Td (1,%)] @(0,y)Td(0.)) (2.6)
Xy

where I = 75 for pseudo scalar meson and I' = ¥, (k = 1,2, 3) for vector meson.

To study the meson spectrum and the possible chiral symmetry breaking phenomenon we
performed simulations also on larger volumes V = 64 x 123 and V = 64 x 24 with B = 7. The
chosen value of 3 is far away from the bulk phase transition, but still at a relatively large coupling.
In the left panel of Fig. 3 we have plotted the PCAC-mass as a function of bare fermion mass. The
smallest volume V = 16 x 8% seems to suffer slightly from finite volume effects, but the simulations
with two larger volumes lay on top of each other.

However, the meson masses do not fare so well. In the right panel of Fig. 3 the estimates
of pseudo scalar and vector meson masses are plotted for the two largest volume. At the highest
PCAC-mass the values agree, but already at relatively high PCAC-mass ~ 0.15 there is a significant
deviation between simulations of V = 64 x 12% and V = 64 x 243, As one approaches the chiral
limit, the simulations with V = 64 x 123-lattice are not consistent. For example, the meson masses
increase as the PCAC-mass is lowered. We think that this behavior is related to a breaking of a
center-symmetry in regions of space!.

The phenomenon is studied in more detail in [18], but the effective mass plots demonstrates
the problem. In the left panel of Fig. 4, we have plotted the pseudo scalar effective mass for two

IThe fermion term explicitly breaks the center symmetry, but one can still distinguish phases where the Polyakov-
loop is large or small.
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Figure 5: The mass of the vector meson divided by pseudo scalar meson. The increase at the chiral limit is
an indication of chiral symmetry breaking.

values of bare mass (my = —0.2 and —0.3) and volume (V = 64 x 123 and V = 64 x 243) as a
function of the temporal distance . The masses of the mesons are obtained from the plateau at
the large ¢. For the small volume with lighter fermions there is no plateau to fit the mass, but a
unexpected rise in the effective mass. This is due to metastable phases which might arise in the
lattices with small volumes. Therefore, we do not think that the smaller volume simulations are
related to the continuum values. However, the phenomena is easily observed from the correlator,
which behave well for larger volume, and we believe that V = 64 x 242 lattice is large enough to
produce continuum physics results.

In the right panel of Fig. 4 we have plotted the PCAC-mass and pseudo scalar meson mass as
the function of spacial extent of the lattice for my = —0.2. As noted earlier the finite volume effects
are mild in PCAC-mass, but quite large on the meson masses.

If the theory is conformal the meson masses depend linearly on the quark masses, whereas
in the case of chiral symmetry breaking, the Goldstone bosons become masless in the chiral limit,
while the other hadrons remain massive. In addition, the Goldstone bosons should approach chiral
limit as my ~ m2PC ac- Our data are not good enough to fit the power of the pseudo scalar meson
mass as the chiral limit is approached, but we can compare the ratio of pseudo scalar meson mass to
vector meson mass which is expected to diverge in the chiral limit (see Fig. 5). We observe a clear
increase in the ratio (vector meson/pion mass) when approaching the zero PCAC-mass indicating
that chiral symmetry is breaking spontaneously. However, a more detailed analysis is needed to
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disentangle whether the ratio continues to increase or if it plateaus to a constant value as the PCAC
mass is further decreased.

3. Conclusions

We have performed exploratory studies of a SO(4)-gauge theory with two Dirac fermions
transforming according to the vectorial representation of the gauge group. As in pure gauge theory
there is a bulk phase transition below 3 = 5, which depends mildly on the fermion masses. The
computation of meson masses suffers from the finite volume effects and require relative large lat-
tices. We believe that lattices of size V = 64 x 243 are needed to produce meaningful results. We
find preliminary indications of chiral symmetry breaking, but a conclusive result requires further
studies.
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