

θ -dependence of the deconfinement transition in Yang-Mills theories.

M. D'Elia

Dipartimento di Fisica dell'Universitá di Pisa and INFN - Sezione di Pisa, Largo Pontecorvo 3, I-56127 Pisa, Italy E-mail: delia@df.unipi.it

F. Negro*

Dipartimento di Fisica dell'Università di Genova, I-16146 Genova, Italy and INFN, Sezione di Genova, I-16146 Genova, Italy E-mail: fnegro@ge.infn.it

We investigate the dependence of the deconfinement temperature of SU(3) pure gauge theory on the topological θ parameter, finding that, for small values of θ , it decreases linearly in θ^2 . The problem is approached numerically using lattice simulations at imaginary θ , in order to avoid the sign problem present at real θ , then exploiting analytic continuation. The dependence is also studied analytically in the limit of a large number of colors *N*, based on a simple model for the dependence of the topological susceptibility on *T*: we find that the critical temperature decreases linearly with θ^2/N^2 ; model results are comparable with numerical results obtained for N = 3.

XXX International Symposium on Lattice Field Theory June 24-29, 2012 Cairns Convention Centre, Cairns, Australia

*Speaker.

F. Negro

1. Introduction

The possible presence of a CP violating topological θ term in the QCD Lagrangian:

$$\mathscr{L}_{\theta} = \mathscr{L}_{\text{QCD}} - i\theta q(x) \qquad q(x) = \frac{g_0^2}{64\pi^2} \varepsilon_{\mu\nu\rho\sigma} F^a_{\mu\nu}(x) F^a_{\rho\sigma}(x) \qquad (1.1)$$

where q(x) is the topological charge density, is constrained by stringent experimental upper bounds, $(|\theta| \leq 10^{-10})$. Nevertheless, the dependence of QCD and of SU(N) gauge theories on θ is of great theoretical and phenomenological interest. θ derivatives of the vacuum free energy, computed at $\theta = 0$, enter various aspects of hadron phenomenology. An example is the topological susceptibility $\chi \equiv \langle Q^2 \rangle / V$ ($Q \equiv \int d^4x q(x)$ and V is the space-time volume), which enters the solution of the socalled $U(1)_A$ problem [1, 2].

In the present study we focus on the effects that a non-zero θ induces on the deconfinement phase transition of pure Yang-Mills theories. The CP symmetry present at $\theta = 0$ implies that the critical temperature, $T_c(\theta)$, must be an even function of θ , therefore we parameterize it as follows

$$T_c(\theta)/T_c(0) = 1 - R_\theta \ \theta^2 + O(\theta^4) \tag{1.2}$$

In the following we will determine R_{θ} for the SU(3) pure gauge theory by means of numerical lattice simulations, obtaining $R_{\theta} > 0$. Then we will discuss the results of a model computation, valid in the large N limit, showing that R_{θ} is expected to be $O(1/N^2)$.

2. Numerical approach: analytic continuation

Lattice simulations are the ideal tool to study non-perturbative effects related to θ dependence. Nevertheless, the Euclidean path integral representation of the partition function

$$Z(T,\theta) = \int [dA] \ e^{-S_{QCD}[A] + i\theta Q[A]} = e^{-V_s f(\theta)/T},$$
(2.1)

is not suitable for Monte-Carlo simulations, because the measure is complex when $\theta \neq 0$. In Eq. (2.1) S_{QCD} is the pure gauge action, $f(\theta)$ is the free energy density and V_s is the spatial volume.

A similar sign problem appears for QCD at finite baryon chemical potential μ_B . In that case, a possible but not exhaustive solution is to study the theory at imaginary μ_B , where the measure is positive, then exploiting analytic continuation to infer the dependence at real μ_B , at least for small values of μ_B/T [3]. The approach proposed in Refs. [4, 5, 6, 7] for exploring a non-zero θ is identical in principle. As for $\mu_B \neq 0$ one assumes the theory to be analytical around $\theta = 0$: this fact is supported by our present knowledge about free energy derivatives at $\theta = 0$ [8, 9, 10, 11, 12].

As it happens for analytic continuation at nonzero μ_B [13], we expect that linear terms in θ^2 , hence R_{θ} , can be determined reliably by analytic continuation from an imaginary $\theta \equiv i\theta_I$ term, i.e. from numerical studies of the lattice partition function:

$$Z_L(T,\theta) = \int [dU] e^{-S_L[U] - \theta_L Q_L[U]}, \qquad (2.2)$$

where [dU] is the integration over the elementary gauge link variables U_{μ} ; S_L and Q_L are the lattice discretizations of respectively the pure gauge action and the topological charge, $Q_L = \sum_x q_L(x)$. We consider the Wilson plaquette action, $S_L = \beta \sum_{x,\mu>\nu} (1 - \text{ReTr} \prod_{\mu\nu} (x)/N)$, where $\beta = 2N/g_0^2$.

Figure 1: Left panel: Polyakov loop and its susceptibility as a function of β on a $24^3 \times 6$ lattice and for a few θ_L values. The susceptibility values have been multiplied by a factor 250. Right Panel: Determination of the renormalization constant *Z* on a 16^4 lattice. The dashed line is a cubic interpolation of data.

The lattice discretized operator $q_L(x)$ is linked, in general, to the continuum operator q(x) by a finite multiplicative renormalization [14]

$$q_L(x) \stackrel{a \to 0}{\sim} a^4 Z(\beta) q(x) + O(a^6) , \qquad (2.3)$$

where $a = a(\beta)$ is the lattice spacing and $\lim_{a\to 0} Z = 1$; therefore the imaginary part of θ is related to the lattice parameter θ_L appearing in Eq. (2.2) as follows: $\theta_I = Z \theta_L$. It is important, in order to keep the Monte-Carlo algorithm efficient enough, to choose a simple definition of $q_L(x)$, even if the associated renormalization is large. Following Ref. [7], we adopt the gluonic definition

$$q_L(x) = \frac{-1}{2^9 \pi^2} \sum_{\mu\nu\rho\sigma=\pm 1}^{\pm 4} \tilde{\epsilon}_{\mu\nu\rho\sigma} \operatorname{Tr} \left(\Pi_{\mu\nu}(x) \Pi_{\rho\sigma}(x) \right) , \qquad (2.4)$$

where $\tilde{\varepsilon}_{\mu\nu\rho\sigma} = \varepsilon_{\mu\nu\rho\sigma}$ for positive directions and $\tilde{\varepsilon}_{\mu\nu\rho\sigma} = -\tilde{\varepsilon}_{(-\mu)\nu\rho\sigma}$. That allows for a standard heat-bath + over-relaxation algorithm over SU(2) subgroups [7].

The Z_N center symmetry, corresponding to gauge transformations which are periodic in the Euclidean time direction only up to a center group element, is exact for SU(N) pure gauge theories and is spontaneously broken at their deconfinement transition. It remains exact also at finite θ_L , since $q_L(x)$ is a sum over closed local loops, hence we still expect Z_N spontaneous breaking and we can adopt the Polyakov loop and its susceptibility as probes for deconfinement

$$\langle L \rangle \equiv \frac{1}{V_s} \sum_{\vec{x}} \frac{1}{N} \langle \operatorname{Tr} \prod_{t=1}^{N_t} U_0(\vec{x}, t) \rangle \qquad \chi_L \equiv V_s \left(\langle L^2 \rangle - \langle L \rangle^2 \right) \rangle, \qquad (2.5)$$

where N_t is the number of sites in the temporal direction.

We have performed simulations on three different lattices, $16^3 \times 4$, $24^3 \times 6$ and $32^3 \times 8$, corresponding, around T_c , to equal spatial volumes (in physical units) and three different lattice spacings $a \simeq 1/(4T_c)$, $a \simeq 1/(6T_c)$ and $a \simeq 1/(8T_c)$. That permits us to perform a continuum limit extrapolation of our results. On each lattice, different series of simulations at fixed θ_L and variable β have been performed, with typical statistics of $10^5 - 10^6$ measurements, each separated by 4 over-relaxation + 1 heat-bath sweeps, for each θ_L . In Fig. 1 we show results for the Polyakov loop

Figure 2: Left panel: $T_c(\theta)/T_c(0)$ as a function of θ^2 for different values of N_t . Dashed lines are the result of linear fits, as reported in the text, then extrapolated to $\theta^2 > 0$. Right panel: R_{θ} as a function of $1/N_t^2$. The point at $1/N_t = 0$ is the continuum limit extrapolation, assuming $O(a^2)$ corrections.

modulus and its susceptibility as a function of β for a few values of θ_L on a $24^3 \times 6$ lattice; we also show data obtained after reweighting in β .

The critical coupling $\beta_c(\theta_L)$ has been located at the maximum of the susceptibility after a Lorentzian fit to unreweighted data. We checked that the values obtained at $\theta_L = 0$ coincide, within errors, with those found in previous works [15]. From $\beta_c(\theta_L)$ we reconstruct $T_c(\theta_L)/T_c(0) = a(\beta_c(0))/a(\beta_c(\theta_L))$ by means of the non-perturbative determination of $a(\beta)$ reported in Ref. [15]. Notice that most finite size effects in the determination of $\beta_c(\theta_L)$ are expected to cancel when computing the ratio $T_c(\theta_L)/T_c(0)$. A complete set of results is reported in Table 1 of Ref. [16].

Finally, we need to convert θ_L into the continuum parameter $\theta = i \theta_I$. Possible methods for a non-perturbative determination of the renormalization constant $Z(\beta)$ are based on the assumption that the ultraviolet fluctuations responsible for Z are independent of the topological background [17]; here, following Ref. [7], we obtain Z in terms of averages over the thermal ensemble:

$$Z = \langle QQ_L \rangle / \langle Q^2 \rangle \tag{2.6}$$

where Q is, configuration by configuration, the integer closest to the topological charge obtained after cooling. Z has been determined for a set of β values on a symmetric 16⁴ lattice (see Fig. 1), then obtaining Z at the critical values of β by a cubic interpolation. A check for systematic effects has been done by changing the number of cooling sweeps (15, 30, 45 and 60 sweeps) and, at the highest explored value of β , by exploring also a larger 24⁴ lattice. In this way we finally obtain $\theta_I(\beta_c(\theta_L)) = Z(\beta_c(\theta_L)) \theta_L$. The values of θ_I we have obtained are reported in the 4th column of Table 1 in Ref. [16]. Final results for $T_c(\theta_I)/T_c(0)$ and for the three different lattices explored are reported in Fig. 2. In all cases a linear dependence in θ^2 , according to Eq. (1.2), nicely fits data. In particular we obtain $R_{\theta} = 0.0299(7)$ for $N_t = 4$ ($\chi^2/d.o.f. \simeq 0.3$), $R_{\theta} = 0.0235(5)$ for $N_t = 6$ ($\chi^2/d.o.f. \simeq 1.6$) and $R_{\theta} = 0.0204(5)$ for $N_t = 8$ ($\chi^2/d.o.f. \simeq 0.7$). Assuming $O(a^2)$ (i.e. $O(1/N_t^2)$) corrections, we can extrapolate the continuum value $R_{\theta} = 0.0175(7)$, $\chi^2/d.o.f. \simeq 0.97$ (see Fig. 2). We conclude that T_c decreases in presence of a real non-zero θ , in agreement with arguments based on model [18, 19] and semi-classical [20] computations.

3. Large *N* estimate

A first order transition is the point where the free energies of two different phases get the same value. Let $f_{d/c}$ be the free energies associated to the deconfined/confined phase of SU(N) gauge theories. around T_c they can be expanded, apart from a common constant, in terms of $t = (T - T_c)/T_c$: $f_{c/d}/T = A_{c/d} t + O(t^2)$. The slope difference is related to the latent heat $\Delta \varepsilon = T_c(A_c - A_d)$.

At $\theta \neq 0$ both free energies get an additional contribution which, at the lowest order in θ , reads $\chi(T)\theta^2/T$, where $\chi(T)$ is the topological susceptibility at $\theta = 0$. Our model exploits the fact that in the large *N* limit $\chi(T) = \chi(0) \equiv \chi$ for $T < T_c$ and $\chi(T) = 0$ for $T > T_c$ [21, 22, 23], hence

$$f_c/T = A_c t + \chi \theta^2 / 2T + O(t^2)$$
 $f_d/T = A_d t + O(t^2)$

From this argument one can obtain $T_c(\theta)$ by finding the temperature at which $f_c = f_d$, the result is

$$\frac{T_c(\theta)}{T_c(0)} = 1 - \frac{\chi}{2\Delta\varepsilon}\theta^2 + O(\theta^4) = 1 - \frac{0.253(56)}{N^2}\theta^2 + O(1/N^4)$$
(3.1)

where $\Delta \varepsilon$ is again the latent heat of the transition $\theta = 0$. The coefficient of the quadratic term have been determined numerically using the results in [8, 22, 24]. We can extrapolate such result to SU(3), getting $R_{\theta} \simeq 0.0282(62)$: this is larger than our determination, but we expect that since, for SU(3), our assumption for a sharp drop of χ at T_c is not true, the actual behavior being smoother [21]. It would be interesting to extend our numerical results to N > 3, in order to check Eq. (3.1), as well as to N = 2, to compare with the results of Ref. [20]. From Eq. (3.1) we read that R_{θ} scales as $1/N^2$ in the large N limit, in agreement with general arguments predicting the free energy to be a function of θ/N [25]: therefore in the large N limit T_c should be θ independent.

4. Conclusions and speculations

We have discussed the θ -dependence of the deconfinement temperature in SU(3) pure gauge theories. Exploiting analytic continuation from imaginary to real θ , we have deduced that T_c decreases with θ , the curvature of the critical line being $R_{\theta} = 0.0175(7)$ at $\theta = 0$. As it happens for the $T - \mu_B^2$ plane case, other transition lines may be present in the $T - \theta^2$ plane. For $\mu_B^2 < 0$ one finds unphysical transitions, known as Roberge-Weiss lines [26], associated with the periodicity of the theory in imaginary μ_B . In the case of the $T - \theta^2$ diagram the situation is different but similar in some sense: no periodicity is expected for imaginary θ , CP being explicitely broken for any nonzero θ_I , hence we cannot predict other possible transitions for $\theta^2 < 0$. A 2π -periodicity is instead expected for real θ , with a possible phase transition at $\theta = \pi$ where CP breaks spontaneously. Our simulations give evidence only for a deconfinement transition line, which is linear in θ^2 at least for small real θ : non-trivial corrections may appear as θ approaches π . However, following Ref. [25] and the arguments above, we speculate that, at least for large N, $T_c(\theta)$ be a multibranched function, dominated by the quadratic term also down to $\theta = \pi$

$$T_c(\theta)/T_c(0) \simeq 1 - R_\theta \min(\theta + 2\pi k)^2 \tag{4.1}$$

where k is a relative integer. Periodicity in θ implies cusps for the function $T_c(\theta)$ at $\theta = (2k+1)\pi$, where the deconfinement line could meet the CP breaking transition present also at T = 0. A similar situation has been described in Ref. [19]. Therefore, analogies may be present between the real θ case and what found at imaginary μ_B .

F. Negro

References

- [1] E. Witten, Current Algebra Theorems for the U(1) Goldstone Boson, Nucl. Phys. B 156 (1979) 269.
- [2] G. Veneziano, U(1) Without Instantons, Nucl. Phys. B 159 (1979) 213.
- [3] M. G. Alford, A. Kapustin and F. Wilczek, *Imaginary chemical potential and finite fermion density on the lattice*, Phys. Rev. D 59, 054502 (1999), [hep-lat/9807039]; A. Hart, M. Laine and O. Philipsen, *Testing imaginary versus real chemical potential in finite temperature QCD*, Phys. Lett. B 505, 141 (2001), [hep-lat/0010008]; P. de Forcrand and O. Philipsen, *The QCD phase diagram for small densities from imaginary chemical potential*, Nucl. Phys. B 642, 290 (2002), [hep-lat/0205016]; M. D'Elia and M. -P. Lombardo, *Finite density QCD via imaginary chemical potential*, Phys. Rev. D 67, 014505 (2003), [hep-lat/0209146].
- [4] V. Azcoiti, G. Di Carlo, A. Galante and V. Laliena, New proposal for numerical simulations of theta vacuum - like systems, Phys. Rev. Lett. 89, 141601 (2002), [hep-lat/0203017].
- [5] B. Alles and A. Papa, *Mass gap in the 2D O(3) non-linear sigma model with a theta=pi term*, Phys. Rev. D 77, 056008 (2008), [arXiv:0711.1496 [cond-mat.stat-mech]].
- [6] S. Aoki, R. Horsley, T. Izubuchi, Y. Nakamura, D. Pleiter, P. E. L. Rakow, G. Schierholz and J. Zanotti, *The Electric dipole moment of the nucleon from simulations at imaginary vacuum angle theta*, arXiv:0808.1428 [hep-lat].
- [7] H. Panagopoulos and E. Vicari, *The 4D SU(3) gauge theory with an imaginary θ term*, JHEP 1111, 119 (2011), [arXiv:1109.6815 [hep-lat]].
- [8] E. Vicari and H. Panagopoulos, *Theta dependence of SU(N) gauge theories in the presence of a topological term*, Phys. Rept. **470**, 93 (2009), [arXiv:0803.1593 [hep-th]].
- [9] B. Alles, M. D'Elia and A. Di Giacomo, Analyticity in theta on the lattice and the large volume limit of the topological susceptibility, Phys. Rev. D 71, 034503 (2005), [hep-lat/0411035].
- [10] L. Del Debbio, H. Panagopoulos and E. Vicari, *Theta dependence of SU(N) gauge theories*, JHEP 0208, 044 (2002), [hep-th/0204125].
- [11] M. D'Elia, *Field theoretical approach to the study of theta dependence in Yang-Mills theories on the lattice*, Nucl. Phys. B **661**, 139 (2003), [hep-lat/0302007].
- [12] L. Giusti, S. Petrarca and B. Taglienti, *Theta dependence of the vacuum energy in the SU(3) gauge theory from the lattice*, Phys. Rev. D **76**, 094510 (2007), [arXiv:0705.2352 [hep-th]].
- [13] P. Cea, L. Cosmai, M. D'Elia, C. Manneschi and A. Papa, *Analytic continuation of the critical line: Suggestions for QCD*, Phys. Rev. D 80, 034501 (2009), [arXiv:0905.1292 [hep-lat]]; P. Cea,
 L. Cosmai, M. D'Elia and A. Papa, *The phase diagram of QCD with four degenerate quarks*, Phys.
 Rev. D 81, 094502 (2010), [arXiv:1004.0184 [hep-lat]]; P. Cea, L. Cosmai, M. D'Elia, A. Papa and
 F. Sanfilippo, *The critical line of two-flavor QCD at finite isospin or baryon densities from imaginary chemical potentials*, [arXiv:1202.5700 [hep-lat]].
- [14] M. Campostrini, A. Di Giacomo and H. Panagopoulos, *The Topological Susceptibility on the Lattice*, Phys. Lett. B **212**, 206 (1988).
- [15] G. Boyd, J. Engels, F. Karsch, E. Laermann, C. Legeland, M. Lutgemeier and B. Petersson, *Thermodynamics of SU(3) lattice gauge theory*, Nucl. Phys. B 469, 419 (1996), [hep-lat/9602007].
- [16] M. D'Elia and F. Negro, θ-dependence of the deconfinement temperature in Yang-Mills theories. Phys. Rev. Lett. 109, 072001, 2012, [arXiv:1205.0538 [hep-lat]]

- [17] A. Di Giacomo and E. Vicari, *Renormalization and topological susceptibility on the lattice*, Phys. Lett. B 275, 429 (1992).
- [18] H. Kouno, Y. Sakai, T. Sasaki, K. Kashiwa and M. Yahiro, *Violations of parity and charge conjugation in the theta vacuum with imaginary chemical potential*, Phys. Rev. D 83, 076009 (2011), [arXiv:1101.5746 [hep-ph]]; Y. Sakai, H. Kouno, T. Sasaki and M. Yahiro, *Theta vacuum effects on QCD phase diagram*, Phys. Lett. B 705, 349 (2011), [arXiv:1105.0413[hep-ph]]; T. Sasaki, J. Takahashi, Y. Sakai, H. Kouno and M. Yahiro, *Theta vacuum and entanglement interaction in the three-flavor Polyakov-loop extended Nambu-Jona-Lasinio model*, Phys. Rev. D 85, 056009 (2012), [arXiv:1112.6086[hep-ph]].
- [19] T. Sasaki, J. Takahashi, Y. Sakai, H. Kouno and M. Yahiro, *Model approach to the sign problem on lattice QCD with theta vacuum*, PoS (Lattice 2012) 076, [arXiv:1210.7565v1[hep-ph]].
- [20] M. Unsal, Theta dependence, sign problems and topological interference, arXiv:1201.6426 [hep-th].
- [21] B. Alles, M. D'Elia and A. Di Giacomo, *Topological susceptibility at zero and finite T in SU(3) Yang-Mills theory*, Nucl. Phys. B **494**, 281 (1997), [Erratum-ibid. B **679**, 397 (2004)], [hep-lat/9605013]; *Topology at zero and finite T in SU(2) Yang-Mills theory*, Phys. Lett. B **412**, 119 (1997), [hep-lat/9706016]; *Topological susceptibility in full QCD at zero and finite temperature*, Phys. Lett. B **483**, 139 (2000), [hep-lat/0004020]; C. Gattringer, R. Hoffmann and S. Schaefer, *The topological susceptibility of SU*(3) *gauge theory near T_c*, Phys. Lett. B **535**, 358 (2002), [hep-lat/0203013].
- [22] B. Lucini, M. Teper and U. Wenger, *Topology of SU(N) gauge theories at T* \simeq 0 *and T* \simeq *T_c*, Nucl. Phys. B **715**, 461 (2005), [hep-lat/0401028].
- [23] L. Del Debbio, H. Panagopoulos and E. Vicari, *Topological susceptibility of SU(N) gauge theories at finite temperature*, JHEP **0409**, 028 (2004), [hep-th/0407068].
- [24] B. Lucini, M. Teper and U. Wenger, *Properties of the deconfining phase transition in SU(N) gauge theories*, JHEP **0502**, 033 (2005), [hep-lat/0502003].
- [25] E. Witten, *Theta dependence in the large N limit of four-dimensional gauge theories*, Phys. Rev. Lett. 81, 2862 (1998), [hep-th/9807109].
- [26] A. Roberge, N. Weiss, Gauge Theories With Imaginary Chemical Potential And The Phases Of QCD, Nucl. Phys. B 275, 734 (1986).

7