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We study the previously found transition in the QCD Diracctpam from localized to delocalized
modes. We us®; = 2+ 1 flavor simulations with physical quark masses to look at liogy
transition point in the spectrum (mobility edge) dependshentemperature and how it scales in
the continuum limit. We find that in the continuum limit algginmodes below a finite physical
scale in the spectrum are localized to the length scale oifthese temperature. Due to their
localized nature these eigenmodes cannot contribute ¢pdmtance spatial correlators. For long
distance quark propagation the system effectively has etrsppgap equal to the mobility edge.
We show that in the temperature rangBT: < T < 5T; the gap depends almost linearly on the
temperature and extrapolates to zerdat The gap is two orders of magnitude larger than the
light quark mass. This could provide an explanation for #ragerature dependence of hadronic
screening masses abole
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Figure 1. The integrated spectral density of the QCD Dirac operatonmtted at a temperature of
T=17T..

1. Introduction

Recently there has been a renewed interest in the spectriulre (PCD Dirac operator at
and above the finite temperature transition [1]-[3]. Thectpen can certainly provide valuable
information on the behaviour of the system. Most notablg, spectral density around zero is an
order parameter for the spontaneous breaking of chiral sstngnBelow the transition where chiral
symmetry is spontaneously broken, it is finite and above rdngstition it vanishes. However, the
vanishing of the density at zero does not necessarily imghgean the spectrum there. In fact, there
is no clear evidence of such a gap even well above the cragstemperaturel.. To demonstrate
this, in Figure 1 we plot the integrated spectral densityrrfradized by the three-volume) of the
Dirac operator at = 1.7T., well above the transition. To resolve how the spectral ilemanishes
at zero we use log scale on both axes. The data is consistdnawanishing gap and a spectral
density going to zero as a power. A comparison of the datawiordifferent spatial volumes
indicates that even larger volumes might be needed to eslod/spectral density close to zero.

In the present paper we report on a detailed study of the kopaes of the Dirac spectrum
in QCD above the critical temperature. Besides the spedemasity we also look at correlations
in the spectrum and localization properties of the Diraeeigctors. Our work is motivated by
our recent findings that both in SU(2) Yang-Mills theory [41daQCD [5] the lowest part of the
spectrum consists of localized eigenmodes and the comdappeigenvalues obey simple Poisson
statistics. Here we would like to better understand thereatf this transition and its physical
implications.

2. Simulation details

The present work is based on lattice simulations of QCD with #lavours of dynamical
guarks at the physical point set by the pion and the kaon nidmslattice spacing was fixed using
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the kaon decay constant. We use the Symanzik improved gatiga and the two stout smeared
staggered fermion action of the Budapest-Wuppeartal gwitlp the parameters determined by
them. Our simulations were performed at three values ofdtieéd spacing, 0.125 fm, 0.082 fm
and 0.062 fm, on lattices of several different spatial s@ggimg from 2 fm to 6 fm. To study the
temperature dependence of the transition from localizedetocalized modes we considered the
temperature range betwe&n= 1.7 T; and 5T;. For more technical details we refer the reader to
Ref. [7].

3. Spectral statistics

The main purpose of the present work is to study the detaikheftransition in the Dirac
spectrum from the lowest, localized part to the delocalizgime higher up in the spectrum. The
spectral statistics providing the clearest signal of suithrssition is the distribution of the unfolded
nearest neighbour level spacings defined as

)\n+l - )\n

For localized eigenmodes the distribution is known to bexgoeential of the form
Po(s) = exp(—9), (3.2)

corresponding to eigenvalues distributed according t&tsisson distribution. In contrast, for delo-
calized eigenmodes it is given to a very good approximatipthb Wigner surmise corresponding
to the given Wigner-Dyson random matrix universality clagsttice staggered fermions in the
fundamental representation of the SU(3) gauge group arerkno belong to the chiral unitary
ensemble [8] and the Wigner surmise for that is

Pus(S) = 3;352 : exp(—%s?) . (3.3)

In any finite volume the transition from the exponential te Wigner surmise distribution
occurs gradually. To characterize the transition in a qtaivie way, in Fig. 2 we plot how the
variance of the unfolded level spacing distribution change we go up in the spectrum. The
data shown corresponds to a temperatur@ ef 2.6 T, and three different lattice spatial volumes
ranging from 8 frd to 64 . We also indicated with dashed lines the analytically cotegwalues
corresponding to the exponential distribution (localizege in the left of the plot) and the Wigner
surmise (delocalized case in the right of the plot). The dataothly interpolates between the two
extremes confirming that indeed a delocalization tramsibiccurs as on goes up in the spectrum. In
Fig. 3 we show a blow-up of the transition region along withgie three-parameter fits to the data
sets on the three spatial volumes. Inspecting the fit pasm@tot shown here) also confirms what
is already obvious by looking at the Figure; the transitietsgstronger as the volume is increased.
Its behaviour is consistent with the slope of the varianeerding at the inflection point in the
thermodynamic limit.
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Figure2: The variance of the unfolded level spacing distribution &sn&tion of the location in the Dirac
spectrum. The temperature was seflte= 2.6 T and the different symbols correspond to three spatial
lattice sizes ranging from 2-4 fm across. The two dashedbotal lines indicate the analytic results for the
localized (exponential, left) and delocalized (Wignemsise, right) case.
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Figure 3: A blow-up of the transition region of Fig. 2. The continuotle dashed and the dotted lines are
separate fits for the three data sets.

4. Possible physical impact of localization

The lowest part of the Dirac spectrum is particularly impattsince hadronic correlators
are built out of quark propagators. In the spectral decoitipnsof the propagator the lowest
eigenmodes get a large contribution especially if the quaaks is small as is the case for the
and thed quark in QCD. If, however, the lowest quark modes are loedlio a scale they cannot
propagate quarks to distancess> d and they effectively do not contribute to hadron correkator
above that length scale. Therefore the physically most itapb questions about localization are
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Figure 4: The localization length of the localized eigenmodes at tve-énd of the Dirac spectrum as
a function of the temperature. The different symbols cqoesl to data coming from simulations with
different values of the lattice spacing.

the following;

1. What is the typical length scatbwhere the lowest eigenmodes are localized (localization
length)?

2. What s the point in the spectrum up to which eigenmodekasdized(A¢)? In the literature
on Anderson localization that is called thwbility edge.

These questions have to be answered in the continuum limi. v@uld also be interested in how
the quantitiesd andA. depend on the physical temperature.

5. Localization length

The simplest way to measure the localization length of aarsigctor is based on the inverse
participation ratio,
IPR=Y [y(x)[*, (5.1)
X

where/(x) is a normalized eigenvector and the summation is over thdendgace-time lattice.
Since the IPR of a mode spreading homogeneously in a subeoland being zero everywhere
else is ¥v we can define the physical localization length by

d=a (IPR)™4, (5.2)

wherea is the lattice spacing. The quantitiycertainly depends on the spatial structure of the given
eigenmode but it gives a rough idea of the length scale onhwihgpreads out. Therefore we will
refer tod as thelocalization length. In Fig. 4 we plot the localization length as a function of the
temperature. Since the most natural unit to measure thézatian length is the size of the box in
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Figure5: The ratio of the mobility edge and the light quark mass as atfan of the temperature. Different
symbols represent data taken at different values of thedatpacing. The continuous curve is a second order
polynomial fit to all the data. It crosses the horizontal @&ti§ = 172 Mev.

the temporal direction, i.e. the inverse temperature, veethis unit in the Figure. By comparing
data obtained at different temperatures, it is apparemtliedocalization scale is indeed set by the
inverse temperature. There might be a slight dependendemthe lattice spacing but it definitely
does not increase in the continuum limit and it certainlyais/stays below the temporal box size.

6. Continuum limit of the mobility edge

We have seen that the lowest Dirac eigenmodes are locabzibe tength scale of the inverse
temperature therefore they cannot propagate quarks terldigtances. The physical importance
of this effect depends on how far up in the spectrum thesditecamodes extend. The quantity
that characterizes this is the mobility edde, In this respect the mobility edge plays a role similar
to the quark mass, it acts effectively as a gap as far as quadesnpropagating to long distances
are concernedA; also renormalizes similarly to the quark mass (see [7] feait® and the ra-
tio Ac/myq is a well-defined quantity in the continuum limit that can lsed to characterize this
effective gap.

In Fig. 5 we plot this ratio as a function of the temperaturee #étermined\; using the fits
in Fig. 3 and identifying the inflection point of the fitted fetions. This turned out to be volume-
independent to a very good precision. The data obtainedreg tifferent values of the lattice
spacing fall on the same smooth curve showing that disatéiiz effects are well in control. The
temperature-dependence of the mobility edge turns out talrbest linear but a small quadratic
term is needed to render tly& of a global fit to all the data in the Figure acceptable. Exdtaiing
the fitted curve to smaller temperatures beyond the rangeeafidta shows that the mobility edge
vanishes at a temperature of 172 MeV which is consistenttwéhocation of the finite temperature
cross-over [9, 10]. Below that the lowest Dirac eigenmodesafready expected to be delocalized
and their spectral statistics is described by Wigner-Dysmuom matrix statistics.



Isthere a gap in the QCD Dirac spectrum above T¢? Tamas G. Kovacs

7. Conclusions

We showed that the lowest part of the QCD Dirac spectrum stmsi localized eigenmodes
and the spectral statistics of the corresponding eigeesatibeys Poisson statistics. There is a
mobility edge A separating these localized modes from extended modes higlethe spectrum.
The transition af\. appears to be similar to a phase transition as it becomeawstrdf the spatial
volume is increased. In the localized regime the localiwatength is at or below the inverse
temperature and modes below cannot propagate quarks to distances larger than 1n this
respect the mobility edge is effectively a gap in the spectatileast as far as long-distance physics
is concerned. It plays a role similar to the quark mass bug tivio orders of magnitude larger
than that, already at moderately high temperatures T-5The scaling of the mobility edge and
the localization length indicates that localization mightvide a microscopic explanation of the
observed increase of hadronic screening masses with tipetatare [11].
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