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Is there a gap in the QCD Dirac spectrum above Tc?
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We study the previously found transition in the QCD Dirac spectrum from localized to delocalized

modes. We useN f = 2+ 1 flavor simulations with physical quark masses to look at howthe

transition point in the spectrum (mobility edge) depends onthe temperature and how it scales in

the continuum limit. We find that in the continuum limit all eigenmodes below a finite physical

scale in the spectrum are localized to the length scale of theinverse temperature. Due to their

localized nature these eigenmodes cannot contribute to long distance spatial correlators. For long

distance quark propagation the system effectively has a spectral gap equal to the mobility edge.

We show that in the temperature range 1.5Tc < T ≤ 5Tc the gap depends almost linearly on the

temperature and extrapolates to zero atTc. The gap is two orders of magnitude larger than the

light quark mass. This could provide an explanation for the temperature dependence of hadronic

screening masses aboveTc
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Figure 1: The integrated spectral density of the QCD Dirac operator computed at a temperature of
T = 1.7Tc.

1. Introduction

Recently there has been a renewed interest in the spectrum ofthe QCD Dirac operator at
and above the finite temperature transition [1]-[3]. The spectrum can certainly provide valuable
information on the behaviour of the system. Most notably, the spectral density around zero is an
order parameter for the spontaneous breaking of chiral symmetry. Below the transition where chiral
symmetry is spontaneously broken, it is finite and above the transition it vanishes. However, the
vanishing of the density at zero does not necessarily imply agap in the spectrum there. In fact, there
is no clear evidence of such a gap even well above the cross-over temperature,Tc. To demonstrate
this, in Figure 1 we plot the integrated spectral density (normalized by the three-volume) of the
Dirac operator atT = 1.7Tc, well above the transition. To resolve how the spectral density vanishes
at zero we use log scale on both axes. The data is consistent with a vanishing gap and a spectral
density going to zero as a power. A comparison of the data for two different spatial volumes
indicates that even larger volumes might be needed to resolve the spectral density close to zero.

In the present paper we report on a detailed study of the lowest part of the Dirac spectrum
in QCD above the critical temperature. Besides the spectraldensity we also look at correlations
in the spectrum and localization properties of the Dirac eigenvectors. Our work is motivated by
our recent findings that both in SU(2) Yang-Mills theory [4] and QCD [5] the lowest part of the
spectrum consists of localized eigenmodes and the corresponding eigenvalues obey simple Poisson
statistics. Here we would like to better understand the nature of this transition and its physical
implications.

2. Simulation details

The present work is based on lattice simulations of QCD with 2+1 flavours of dynamical
quarks at the physical point set by the pion and the kaon mass.The lattice spacing was fixed using
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the kaon decay constant. We use the Symanzik improved gauge action and the two stout smeared
staggered fermion action of the Budapest-Wuppeartal groupwith the parameters determined by
them. Our simulations were performed at three values of the lattice spacing, 0.125 fm, 0.082 fm
and 0.062 fm, on lattices of several different spatial size ranging from 2 fm to 6 fm. To study the
temperature dependence of the transition from localized todelocalized modes we considered the
temperature range betweenT = 1.7 Tc and 5Tc. For more technical details we refer the reader to
Ref. [7].

3. Spectral statistics

The main purpose of the present work is to study the details ofthe transition in the Dirac
spectrum from the lowest, localized part to the delocalizedregime higher up in the spectrum. The
spectral statistics providing the clearest signal of such atransition is the distribution of the unfolded
nearest neighbour level spacings defined as

s =
λn+1−λn

〈λn+1−λn〉
. (3.1)

For localized eigenmodes the distribution is known to be an exponential of the form

Pp(s) = exp(−s), (3.2)

corresponding to eigenvalues distributed according to thePoisson distribution. In contrast, for delo-
calized eigenmodes it is given to a very good approximation by the Wigner surmise corresponding
to the given Wigner-Dyson random matrix universality class. Lattice staggered fermions in the
fundamental representation of the SU(3) gauge group are known to belong to the chiral unitary
ensemble [8] and the Wigner surmise for that is

Pws(s) =
32
π2 s2 ·exp

(

−
4
π

s2
)

. (3.3)

In any finite volume the transition from the exponential to the Wigner surmise distribution
occurs gradually. To characterize the transition in a quantitative way, in Fig. 2 we plot how the
variance of the unfolded level spacing distribution changes as we go up in the spectrum. The
data shown corresponds to a temperature ofT = 2.6 Tc and three different lattice spatial volumes
ranging from 8 fm3 to 64 fm3. We also indicated with dashed lines the analytically computed values
corresponding to the exponential distribution (localizedcase in the left of the plot) and the Wigner
surmise (delocalized case in the right of the plot). The datasmoothly interpolates between the two
extremes confirming that indeed a delocalization transition occurs as on goes up in the spectrum. In
Fig. 3 we show a blow-up of the transition region along with simple three-parameter fits to the data
sets on the three spatial volumes. Inspecting the fit parameters (not shown here) also confirms what
is already obvious by looking at the Figure; the transition gets stronger as the volume is increased.
Its behaviour is consistent with the slope of the variance diverging at the inflection point in the
thermodynamic limit.
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Figure 2: The variance of the unfolded level spacing distribution as afunction of the location in the Dirac
spectrum. The temperature was set toT = 2.6 Tc and the different symbols correspond to three spatial
lattice sizes ranging from 2-4 fm across. The two dashed horizontal lines indicate the analytic results for the
localized (exponential, left) and delocalized (Wigner surmise, right) case.
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Figure 3: A blow-up of the transition region of Fig. 2. The continuous,the dashed and the dotted lines are
separate fits for the three data sets.

4. Possible physical impact of localization

The lowest part of the Dirac spectrum is particularly important since hadronic correlators
are built out of quark propagators. In the spectral decomposition of the propagator the lowest
eigenmodes get a large contribution especially if the quarkmass is small as is the case for theu
and thed quark in QCD. If, however, the lowest quark modes are localized to a scaled they cannot
propagate quarks to distancesL ≫ d and they effectively do not contribute to hadron correlators
above that length scale. Therefore the physically most important questions about localization are

4



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
2
)
0
7
8

Is there a gap in the QCD Dirac spectrum above Tc? Tamas G. Kovacs

200 300 400 500 600 700 800 900

T  (MeV)
0

0.2

0.4

0.6

0.8

1

 d
 T

a=0.125 fm
a=0.082 fm
a=0.062 fm

Figure 4: The localization length of the localized eigenmodes at the low-end of the Dirac spectrum as
a function of the temperature. The different symbols correspond to data coming from simulations with
different values of the lattice spacing.

the following;

1. What is the typical length scaled where the lowest eigenmodes are localized (localization
length)?

2. What is the point in the spectrum up to which eigenmodes arelocalized(λc)? In the literature
on Anderson localization that is called themobility edge.

These questions have to be answered in the continuum limit. One would also be interested in how
the quantitiesd andλc depend on the physical temperature.

5. Localization length

The simplest way to measure the localization length of an eigenvector is based on the inverse
participation ratio,

IPR = ∑
x
|ψ(x)|4, (5.1)

whereψ(x) is a normalized eigenvector and the summation is over the whole space-time lattice.
Since the IPR of a mode spreading homogeneously in a subvolume v and being zero everywhere
else is 1/v we can define the physical localization length by

d = a (IPR)−4, (5.2)

wherea is the lattice spacing. The quantityd certainly depends on the spatial structure of the given
eigenmode but it gives a rough idea of the length scale on which it spreads out. Therefore we will
refer tod as thelocalization length. In Fig. 4 we plot the localization length as a function of the
temperature. Since the most natural unit to measure the localization length is the size of the box in
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Figure 5: The ratio of the mobility edge and the light quark mass as a function of the temperature. Different
symbols represent data taken at different values of the lattice spacing. The continuous curve is a second order
polynomial fit to all the data. It crosses the horizontal axisatT = 172 Mev.

the temporal direction, i.e. the inverse temperature, we use this unit in the Figure. By comparing
data obtained at different temperatures, it is apparent that the localization scale is indeed set by the
inverse temperature. There might be a slight dependence ofd on the lattice spacing but it definitely
does not increase in the continuum limit and it certainly always stays below the temporal box size.

6. Continuum limit of the mobility edge

We have seen that the lowest Dirac eigenmodes are localized to the length scale of the inverse
temperature therefore they cannot propagate quarks to larger distances. The physical importance
of this effect depends on how far up in the spectrum these localized modes extend. The quantity
that characterizes this is the mobility edge,λc. In this respect the mobility edge plays a role similar
to the quark mass, it acts effectively as a gap as far as quark modes propagating to long distances
are concerned.λc also renormalizes similarly to the quark mass (see [7] for details) and the ra-
tio λc/mud is a well-defined quantity in the continuum limit that can be used to characterize this
effective gap.

In Fig. 5 we plot this ratio as a function of the temperature. We determinedλc using the fits
in Fig. 3 and identifying the inflection point of the fitted functions. This turned out to be volume-
independent to a very good precision. The data obtained at three different values of the lattice
spacing fall on the same smooth curve showing that discretization effects are well in control. The
temperature-dependence of the mobility edge turns out to bealmost linear but a small quadratic
term is needed to render theχ2 of a global fit to all the data in the Figure acceptable. Extrapolating
the fitted curve to smaller temperatures beyond the range of the data shows that the mobility edge
vanishes at a temperature of 172 MeV which is consistent withthe location of the finite temperature
cross-over [9, 10]. Below that the lowest Dirac eigenmodes are already expected to be delocalized
and their spectral statistics is described by Wigner-Dysonrandom matrix statistics.
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7. Conclusions

We showed that the lowest part of the QCD Dirac spectrum consists of localized eigenmodes
and the spectral statistics of the corresponding eigenvalues obeys Poisson statistics. There is a
mobility edge,λc separating these localized modes from extended modes higher up in the spectrum.
The transition atλc appears to be similar to a phase transition as it becomes stronger if the spatial
volume is increased. In the localized regime the localization length is at or below the inverse
temperature and modes belowλc cannot propagate quarks to distances larger than 1/T . In this
respect the mobility edge is effectively a gap in the spectrum at least as far as long-distance physics
is concerned. It plays a role similar to the quark mass but it is two orders of magnitude larger
than that, already at moderately high temperatures (2-5Tc). The scaling of the mobility edge and
the localization length indicates that localization mightprovide a microscopic explanation of the
observed increase of hadronic screening masses with the temperature [11].
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