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1. Introduction

Lattice QCD has played an important role in study of the non-perturbative aspects of QCD.
However, its application to the finite density system has not been established due to serious diffi-
culty of the sign problem. In this report we propose a new framework of investigating the 2-flavor
QCD with finite temperature and density by using the Karsten-Wilczek (KW) lattice fermion [1],
which possesses only two species doublers, i.e. minimally doubled fermion. This lattice formula-
tion lifts degeneracy of 16 species without breaking its chiral symmetry by introducing a species-
dependent imaginary chemical potential, instead of a species-dependent mass term introduced in
the Wilson fermion formalism. Because of the chemical potential term, its discrete symmetry is
not sufficient to be applied to fully Lorentz symmetric system, i.e. zero temperature and density,
but enough to study the in-medium QCD. To show the usefulness of the KW fermion, we study
strong-coupling lattice QCD with temperature and density.

2. Symmetry of KW-type minimally doubled fermion

The KW fermion is a kind of minimally doubled fermions, involving only two species dou-
blers by introducing a species-dependent imaginary chemical potential, which we call “flavored
chemical potential". This term preserves its chiral symmetry and ultra-locality [2], but breaks
some of discrete spacetime symmetries [3, 4]. We then need three counter terms to take a cor-
rect Lorentz symmetric continuum limit: dimension-3, ψ̄iγ4ψ = iψ†ψ , and dimension-4 terms,
ψ̄γ4∂4ψ , Fj4Fj4 [5]. The fermionic part of KW fermion action with the counter terms is given by

SKW = ∑
x

[
1
2

4

∑
µ=1

ψ̄xγµ
(
Ux,x+µ̂ψx+µ̂ −Ux,x−µ̂ψx−µ̂

)
+ i

r
2

3

∑
j=1

ψ̄xγ4

(
2ψx −Ux,x+ ĵψx+ ĵ −Ux,x− ĵψx− ĵ

)
+iµ3ψ̄xγ4ψx +

d4

2
ψ̄xγ4

(
Ux,x+4̂ψx+4̂ −Ux,x−4̂ψx−4̂

)]
. (2.1)

The second term in the first line including iγ4 is the flavored chemical potential term, which we also
call Karsten-Wilczek(KW) term. We here introduce a parameter r in analogy to Wilson fermion.
µ3 and d4 are parameters for the dimension-3 and dimension-4 counter terms, respectively. The
corresponding Dirac operator in the momentum space yields

aDKW(p) = i
4

∑
µ=1

γµ sinapµ + irγ4

3

∑
j=1

(1− cosapµ)+ iµ3γ4 + id4γ4 sinap4, (2.2)

which has only two zeros at p̄ = (0,0,0, 1
a arcsin

(
− µ3

1+d4

)
) when −1 − d4 < µ3 < 1 + d4 with

r = 1. When we expand the Dirac operator around the zeros, its dispersion relation is not Lorentz
symmetric. As shown in Ref.[2], the tuning condition for the correct dispersion relation is given
by (1+ d4)

2 = 1+ µ2
3 at the tree level. Moreover, it is shown that µ3 has to be tuned to control

imaginary chemical potential in O(1/a).
Symmetries of the lattice action (2.1) are chiral symmetry, cubic symmetry corresponding to

permutation of spatial three axes, CT and P [3]:
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1. U(1) chiral symmetry (γ5 ⊗ τ3 [6, 7, 8])

2. Cubic symmetry

3. CT

4. P

It is notable that these symmetries are the same as those of the finite-density lattice QCD: As an
example, we look into the naive lattice action with chemical potential, which is given by

Snaive =
1
2 ∑

x

[
3

∑
j=1

ψ̄xγ j

(
Ux,x+ ĵψx+ ĵ −Ux,x− ĵψx− ĵ

)
+ ψ̄xγ4

(
eµUx,x+4̂ψx+4̂ − e−µUx,x−4̂ψx−4̂

)]
.

(2.3)
The 4th direction hopping term, involving chemical potential, breaks the hypercubic symmetry into
the spatial cubic symmetry, and also C, P, and T into CT and P, which are the same symmetries of
(2.1). It means that, even if we introduce chemical potential as (2.3) to KW fermion, the symmetries
are unchanged. The KW fermion with the exponential form chemical potential is given by,

SKW = ∑
x

[
1
2

3

∑
j=1

ψ̄xγ j

(
Ux,x+ ĵψx+ ĵ −Ux,x− ĵψx− ĵ

)
+ i

r
2

3

∑
j=1

ψ̄xγ4

(
2ψx −Ux,x+ ĵψx+ ĵ −Ux,x− ĵψx− ĵ

)
+

1+d4

2
ψ̄xγ4

(
eµUx,x+4̂ψx+4̂ − e−µUx,x−4̂ψx−4̂

)
+ iµ3ψ̄xγ4ψx

]
. (2.4)

From the viewpoint of the universality class, these two theories, (2.3) and (2.4), should belong to
the same class.

Here we remark the way of introducing chemical potential. It was pointed out in [9] that a
naive form of the chemical potential, µψ†ψ = µψ̄γ4ψ , violates the Abelian gauge invariance and
requires a counter term to make thermodynamical quantities finite. On the other hand, in the KW
fermion, the flavored chemical potential term is introduced in this naive form. It leads to necessity
of tuning µ3 to deal with O(1/a) additive renormalization of chemical potential, as with the mass
renormalization in the Wilson fermion. This renormalization effect is relevant to the phase diagram
in the (µ3-g2) parameter plane, as discussed in [2].

3. Strong-coupling lattice QCD

We study QCD phase diagram in the framework of the strong-coupling lattice QCD with
KW-type minimally doubled fermion. We extend the strong-coupling analysis with this lattice
fermion [10] to the finite temperature and density system [11, 12, 13]. The effective potential in
terms of the meson field is obtained by performing the 1-link integral in the strong coupling limit
(g2 → ∞), and then introducing auxiliary fields to eliminate the 4-point interactions. In the case
with KW fermion, we have to consider both of the scalar σ = ⟨ψ̄ψ⟩ and vector π4 = ⟨ψ̄iγ4ψ⟩
condensates. Identifying ψ̄γ4 = ψ†, the latter corresponds to the imaginary density i⟨ψ†ψ⟩. For

3



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
2
)
0
7
9

QCD phase diagram with 2-flavor lattice fermion formulations Taro Kimura

the case with SU(Nc) gauge group and d = D+1 dimensions in the finite temperature and density,
we obtain the the following effective potential,

Feff(σ ,π4;m,T,µ,µ3,d4)=
NcD

4
(
(1+ r2)σ2 +(1− r2)π2

4
)
−Nc logA− T

4
log

(
∑
n∈Z

det(Qn+i− j)1≤i, j≤Nc

)
.

(3.1)
In particular, the determinant part for Nc = 3 is given by

∑
n∈Z

det(Qn+i− j)1≤i, j≤Nc

= 8
(

1+12cosh2 E
T
+8cosh4 E

T

)(
15−60cosh2 E

T
+160cosh4 E

T
−32cosh6 E

T
+64cosh8 E

T

)
+64cosh

µB

T
cosh

E
T

(
−15+40cosh2 E

T
+96cosh4 E

T
+320cosh8 E

T

)
+80cosh

2µB

T

(
1+6cosh2 E

T
+24cosh4 E

T
+80cosh6 E

T

)
+80cosh

3µB

T
cosh

E
T

(
−1+ cosh2 E

T

)
+2cosh

4µB

T
, (3.2)

with

E = arcsinh(B/A), A2 =(1+d4)
2+

(
µ3 +Dr− D

2
(1− r2)π4

)2

, B=m+
D
2
(1+r2)σ . (3.3)

Here the baryon chemical potential is defined as µB = 3µ . Remark that the next-leading order
terms in O(1/

√
D) are omitted in the derivation. See [14] for the detailed calculation.

In the zero temperature case, we can solve the equilibrium condition analytically. For D = 3
(d = 4) with m = 0 and r = 1 the potential is given by

Feff(σ)=
9
2

σ2− 3
2

log
(
(1+d4)

2 +(µ3 +3)2)−max

{
3 arcsinh

(
3σ√

(1+d4)2 +(µ3 +3)2

)
,µB

}
.

(3.4)
In this case there are two local minima of the free energy as a function of σ at σ = 0 and σ = σ0.
This σ0 can be determined by the gap equation, ∂Feff/∂σ

∣∣∣
σ=σ0

= 0,

σ 2
0 =

(1+d4)
2 +(µ3 +3)2

18

[√
1+

36
((1+d4)2 +(µ3 +3)2)2 −1

]
. (3.5)

Comparing these two local minima, we can show that the global minimum changes from σ = σ0

to σ = 0 at the critical chemical potential as

µcritical
B (T = 0) = 3arcsinh

(
3σ0√

(1+d4)2 +(µ3 +3)2

)
− 9

2
σ 2

0 . (3.6)

This chiral phase transition is of 1st order because the order parameter σ changes discontinuously
at this critical chemical potential. We can also evaluate the baryon density ρB = −∂Feff/∂ µB at

4
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Figure 1: (Left) Phase diagram for the chiral transition with r = 1, µ3 = −0.9 and d4 = 0. Green and red
lines show 2nd and 1st transition lines, respectively. The transition order is changed from 2nd to 1st at the
tricritical point (µ tri

B ,T tri) = (0.804,0.234). (Right) Three-dimensional chiral phase diagram for T , µB and
µ3 for m = 0 where µ3 runs within half of the physical range −3 < µ3 <

√
32/7−3. Green, red and purple

lines show 2nd, 1st order transitions and tricritical point, respectively.

T = 0. It turns out to be empty ρB = 0 when µB < µcritical
B . On the other hand, when µB > µcritical

B ,
it is saturated as ρB = 1.

We then discuss the phase diagram with respect to chiral symmetry. We now concentrate on
the case with r = 1 for simplicity because the effective potential (3.1) is independent of π4 in such
a case. The 2nd order chiral phase boundary is given by the condition, such that the coefficient of
σ2 in the effective potential (3.1) becomes zero. When the order of the phase transition is changed
from 2nd to 1st, the coefficient of σ4 as well as σ2 should vanish. The left panel of Fig. 1 shows the
phase boundary of the chiral transition with r = 1, µ3 = −0.9 and m = 0 for d4 = 0. The counter
term parameter is taken from the physical region −

√
32/7 < µ3+3 <

√
32/7 [2]. The order of the

phase transition is changed from 2nd to 1st at the tricritical point (µ tri
B ,T tri) = (0.804,0.234). We

also depict σ condensate and the baryon density ρB =−∂Feff/∂ µB as functions of µB with several
fixed T in Fig. 2. We find that there are 1st (T < T tri) and 2nd (T > T tri) order phase transitions for
σ , followed by the phase transition of the density ρB. For m ̸= 0, we can show that the crossover
transition instead appears with the 2nd order critical point.

These results are qualitatively consistent with those with strong-coupling lattice QCD with
staggered fermions, while there are some quantitative differences. For example, the KW phase
diagram is suppressed in T direction compared to that in staggered. We here compare the ratio
of the transition baryon chemical potential at T = 0 to the critical temperature at µB = 0, R0 =

µc(T = 0)/Tc(µB = 0). In staggered fermion, this ratio is R0
st ≃ 3×0.56/(5/3)∼ 1 [12, 13], while

R0
KW ≃ 0.767/0.356 ∼ 2.2. In the real world, this ratio is larger, R0 ≳ MN/170 MeV ∼ 5.5. When

the finite coupling and Polyakov loop effects are taken into account for staggered fermion, Tc(µB =

0) decreases, µc(T = 0) stays almost constant, then R0 value increases [15]. Larger R0 with KW
fermion in the strong coupling limit may suggest smaller finite coupling corrections in the phase
boundary. Another interesting point is the location of the tricritical point. In KW fermion, the ratio
is Rtri

KW = 0.804/0.234 ≃ 3.4, while Rtri
st = 1.73/0.866 ≃ 2.0 for unrooted staggered fermion [12,

13]. It would be too brave to discuss this value, but Rtri
KW is consistent with the recent Monte-Carlo

5



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
2
)
0
7
9

QCD phase diagram with 2-flavor lattice fermion formulations Taro Kimura

0

0.1

0.2

0.3

0.4

0.5

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

C
o

n
d

e
n

s
a

te

D
e

n
s
it
y

Baryon Chemical Potential

0

0.1

0.2

0.3

0.4

0.5

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

C
o

n
d

e
n

s
a

te

D
e

n
s
it
y

Baryon Chemical Potential

0

0.1

0.2

0.3

0.4

0.5

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

C
o

n
d

e
n

s
a

te

D
e

n
s
it
y

Baryon Chemical Potential

0

0.1

0.2

0.3

0.4

0.5

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

C
o

n
d

e
n

s
a

te

D
e

n
s
it
y

Baryon Chemical Potential

Figure 2: Chiral condensate σ and the baryon density ρB for (left) T = 0.3 and (right) T = 0.2 with d4 = 0.
Top and bottom panels show the massless m = 0 and massive m = 0.1 cases. There are 1st and 2nd phase
transitions for σ . In the case of m ̸= 0, there appears the crossover behavior instead of the 2nd order
transition.

simulations (see references in [16]), which implies that the critical point does not exist in the low
baryon chemical potential region, µB/T ≲ 3. These observations reveal usefulness of KW fermion
for research on QCD phase diagram.

Apart from the phase transitions, the µB dependence of σ and ρB seems to have some charac-
teristics in Fig. 2. At T = 0.3 > T tri with m=0, σ and ρB undergoes the 2nd-order phase transition
at µB ≃ 0.5, and at a larger µB (µB ≃ 1.15), increasing rate of ρB as a function of µB becomes
higher again. At lower temperature, T = 0.2 < T tri, partial restoration of the chiral symmetry is
seen before the first order phase transition. Since we have not taken care of the diquark condensate,
these continuous changes are not related to the color superconductor. Other types of matter, such
as quarkyonic matter [17], partial chiral restored matter [15], or nuclear matter, may be related to
the above characteristics.

In this report we focus on the case with r = 1 and d4 = 0 for simplicity. It is shown in [14] that
effects of these parameters are just quantitative.

4. Summary

We have proposed a new framework for investigating the two-flavor finite-(T ,µ) QCD phase
diagram. We have shown that the discrete symmetries of KW fermion strongly suggest its appli-
cability to the in-medium lattice QCD. To support our idea, we study the strong-coupling lattice
QCD in the medium and derive the phase diagram of chiral symmetry for finite temperature and
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chemical potential. We have obtained the phase diagram with 1st, 2nd-order and crossover critical
lines, which is qualitatively in agreement to results from the model study.
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