
P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
2
)
0
8
4

QCD Phase Transition and the Distribution of
Low-lying Eigenvalues with 2+1 Flavors of DWF

Zhongjie Lin∗

Department of Physics, Columbia University, New York, NY 10027, USA
E-mail: jasper@phys.columbia.edu

Results are reported from seven finite temperature ensembles in the temperature range T = 139−
195 MeV with 2+ 1 flavors of domain wall fermions and the DSDR gauge action, which all
lie on a line of constant physics with a pion mass of 200 MeV and a lattice volume of 323 ×
8. We compare preliminary results for the chiral susceptibility and other observables with a
previous study at smaller volume and discuss the effects of finite volume. Low-lying eigenvalues
of the Dirac operator are computed and related to the breaking of the chiral and anomalous U(1)A

symmetries in the region of the QCD phase transition.
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1. Introduction

Phase transition of Quantum Chromodynamics (QCD) has remained an intriguing phenomenon
for decades in both experimental and theoretical studies. Although it is expected that the dynami-
cally broken SU(2)L ×SU(2)R chiral symmetry will be restored above the critical temperature Tc,
the nature of the phase transition as well as the location of Tc is yet to be definitively determined.
On the other hand, the U(1)A symmetry is spoiled by the anomaly. Whether it will be effectively
restored and whether this restoration coincides with the chiral phase transition remain puzzles to
be resolved as well.

Lattice QCD has provided a valuable ab initio method to explore QCD thermodynamics and
its associated symmetries. However, studies with common fermionic discretization mechanisms
(Wilson, staggered) [1, 2] suffer from a significant loss of chiral symmetry before the continuum
limit is taken. In contrast, domain wall fermions (DWF) [3, 4], which accurately respect the chiral
symmetry and reproduce the anomaly, may give a more accurate results at finite lattice spacing.

Previously, we have simulated QCD thermodynamics with DWF on a relatively small 163 ×8
lattices volume [6] using the dislocation suppressing determinant ratio (DSDR) [7, 8] to reduce the
residual chiral symmetry breaking which allowed us to explore a line of constant physics with a
200 MeV pion mass. Here we extend these studies to a larger 323 ×8 lattice volume.

We also report the study for the low-lying eigenvalues for the domain wall Dirac operator. The
rich physics contained in the eigenvalue density provides a unique perspective on many aspects of
the phase transition. The Dirac eigenvalue spectrum can be directly related to both the chiral and
U(1)A symmetry breaking and restoration through Banks-Casher type formulae.

2. Ensembles and Chiral Observables

Since this is a simple extension of our previous work on 163 × 8 lattices [6], we adopt the
same gauge and fermion actions and study the same series of seven temperatures in the range of
T = 139− 195 MeV. As in this earlier study, the input light quark masses are adjusted so that all
ensembles lie on a line of constant physics with mπ ≈ 200 MeV, with m̃l/m̃s = 0.088 to ensure a
physical kaon. (Here the tilde indicates the sum of the input and residual quark masses.)

Table 1 summarizes the input parameters for our finite temperature ensembles1. The use of a
small negative input quark mass has been shown to give consistent results in our previous work [6].
Now with a larger volume, we expect those evolutions with negative input quark masses at T = 139
MeV and 149 MeV to be more stable [13].

The chiral condensates and their susceptibilities are also presented in Table 1. In addition to
the one-flavor scalar chiral condensates, we introduce a subtracted chiral condensate,

∆l,s = 〈ψψ〉l −
ml

ms
〈ψψ〉s (2.1)

in order to remove the divergent piece proportional to the quark mass. We can also compute the
disconnected chiral susceptibilities,

χl,disc

T 2 = N3
σ N3

τ
(
〈(ψψ)2

l 〉−〈ψψ〉2
l
)
. (2.2)

1Additional statistics have been collected since the lattice conference and are included here.
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T (MeV) β Ls ml ms mres 〈ψψ〉l /T 3 ∆ψψ/T 3 χl,disc/T 2 χMS
l,disc/T 2 Ntraj

139 1.633 48 −0.00136 0.0519 0.00588(39) 10.07(4) 11.16(4) 20(2) 9.5(7) 3000
149 1.671 32 −0.00189 0.0464 0.00643(9) 7.03(6) 8.52(6) 28(3) 12(1) 3000
159 1.707 32 0.000551 0.0449 0.00377(11) 5.80(6) 5.39(6) 31(3) 14(1) 2943
168 1.740 32 0.00175 0.0427 0.00209(9) 4.16(8) 2.90(8) 37(3) 16(1) 3008
177 1.771 32 0.00232 0.0403 0.00132(6) 3.17(5) 1.56(5) 22(2) 9.2(1) 3000
186 1.801 32 0.00258 0.0379 0.00076(3) 2.46(4) 0.73(4) 12(2) 5.0(8) 3029
195 1.829 32 0.00265 0.0357 0.00047(1) 2.15(3) 0.43(3) 7(1) 2.8(5) 3412

Table 1: Summary of the parameters and the chiral observables for the finite temperature ensembles with
lattice volume of 323 ×8. (A minus sign is suppressed for all the chiral condensates). The residual masses
are extracted from our 163 ×8 ensembles [6].

The disconnected piece of the chiral susceptibility, after proper renormalization (e.g. in our case
the MS(µ = 2GeV) scheme), provides a good signature for identifying the crossover temperature
as illustrated in Fig. 1.
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Figure 1: The left panel shows the comparison of the renormalized χl,disc in our calculation with earlier
results [6] on a smaller lattice. The right panel shows the comparison of the renormalized χl,disc with results
from various staggered actions [1].

The left panel of Fig. 1 compares our current calculation with the earlier results from [6] on
a smaller lattice. They agree to great extent in regions above the phase transition, indicating the
sufficiency of spatial volume size above the QCD phase transition. However, the disconnected sus-
ceptibilities from the current 323 ×8 work are suppressed significantly below the transition region
compared with those from the smaller ensembles. This behavior agrees with the prediction from a
scaling analysis of the effects of finite volume using a quark meson model [12]. Despite the fact
that a more distinct peak can be observed around 169 MeV for the larger volume, it may be pre-
mature to draw a definite conclusion about the pseudo-critical temperature without simulations at a
larger volume, a lighter quark mass and another lattice spacing to allow a continuum extrapolation.

The right panel of Fig. 1 shows comparison of χMS
l,disc from DWF actions with results from a
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variety of staggered actions [1]. It appears DWF results of volume 323×8 are quite consistent with
483 × 12 staggered results both below and above the transition region, especially with the HISQ
action. However, this agreement could be accidental because the results are obtained for different
pion masses. There is a factor of 1.25 between the pion mass of the domain wall ensembles and the
mass of the lightest Goldstone meson in the HISQ ensembles. One would expect the susceptibilities
for DWF would increase appreciably if the pion mass is reduced to the same level as used in the
HISQ simulations.

3. The Low-lying Eigenvalue Distribution of Dirac Operator

In the exploration of the possible restoration of U(1)A symmetry as well as the chiral sym-
metry of QCD, the low-lying part of the spectrum of the Dirac operator serves as a unique tool,
offering more information than comes from a study of correlators alone. For instance, the order
parameter for the SU(2)L × SU(2)R chiral symmetry and an important U(1)A-breaking difference
of susceptibilities can be expressed in terms of the eigenvalue density of the Dirac operator [9, 10],

−〈ψ̄ψ〉q =
∫

dλ ρ(λ )
2mq

m2
q +λ 2 , q = l,s (3.1)

∆π−δ ≡ χπ −χδ =
∫

dλ ρ(λ )
4m2

l(
m2

l +λ 2
)2 . (3.2)

Different low-lying eigenvalue distributions will lead to different degrees of U(1)A restoration.
To obtain the renormalized eigenvalue spectrum, we follow the same method as described in

detail in [6]. The lowest 100 eigenvalues (Λ) of the hermitian version of DWF Dirac operator (DH ≡
R5γ5DDWF) with a unitary light quark mass are collected with Kalkreuter-Simma method [11]. The
five-dimensional eigenvalue density is renormalized to a more conventional density in a fashion
consistent with the usual bare quark mass m̃, which enables the removal of the quark mass from the

eigenvalue via the relation |Λ| =
√

λ 2 + m̃2
l . The residual mass and therefore the total bare quark

mass m̃ is not well defined on a single configuration at finite lattice spacing. Therefore, when m̃ is
removed from the eigenvalue Λ, some "unphysical" , imaginary values of λ appear. We plot these

using the negative real number −
√

|Λ2 − m̃2
l |.

Figure 2 shows the renormalized distributions of low-lying eigenvalues at various tempera-
tures. The spectra from the 323 × 8 ensembles are plotted as histograms, while those from the
163×8 ensembles [6] are plotted with a black solid line. The distribution from both volumes agree
consistently all through the transition region. With larger volume, the same number of modes are
more condensed at the lower-end of the spectrum and show less fluctuation, revealing the behavior
of the distribution in a more convincing manner. For T = 149−178 MeV, the spectra display a lin-
ear profile, whose intercept decreases with increasing temperatures and finally vanishes around 168
MeV. This coincides with the peak of the disconnected chiral susceptibility and serves as a good
indication of the pseudo-critical temperature for the chiral phase transition via the Banks-Casher
relation. For even higher temperatures, a quadratic function instead of a linear one gives a more
accurate description of the distribution.

In order to study the anomalous U(1)A symmetry, we attempt to evaluate the difference ∆π−δ
from parameters determined by fitting the eigenvalue spectrum. We assume the eigenvalue density

4



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
2
)
0
8
4

QCD Phase Transition and the Distribution of Low-lying Eigenvalues with DWF Zhongjie Lin

0

0.005

0.01

0.015

0.02

0.025

0 0.02 0.04 0.06 0.08 0.1

ρ(
λ
)

λ

149MeV
163 ×8

Min(λ 100)
m̃l
m̃s

0

0.005

0.01

0.015

0.02

0.025

0 0.02 0.04 0.06 0.08 0.1

ρ(
λ
)

λ

159MeV
163 ×8

Min(λ 100)
m̃l
m̃s

0

0.005

0.01

0.015

0.02

0.025

0 0.02 0.04 0.06 0.08 0.1

ρ(
λ
)

λ

168MeV
163 ×8

Min(λ 100)
m̃l
m̃s

0

0.005

0.01

0.015

0.02

0.025

0 0.02 0.04 0.06 0.08 0.1

ρ(
λ
)

λ

177MeV
163 ×8

Min(λ 100)
m̃l
m̃s

0

0.005

0.01

0.015

0.02

0.025

0 0.02 0.04 0.06 0.08 0.1

ρ(
λ
)

λ

186MeV
163 ×8

Min(λ 100)
m̃l
m̃s

0

0.005

0.01

0.015

0.02

0.025

0 0.02 0.04 0.06 0.08 0.1

ρ(
λ
)

λ

195MeV
163 ×8

Min(λ 100)
m̃l
m̃s

Figure 2: The renormalized eigenvalue spectrum for T = 149− 195 MeV. The imaginary, "unphysical"

eigenvalues are plotted as −
√
|Λ2 − m̃2

l |. The spectra from the 323 ×8 ensembles are plotted as histograms
and fitted with a linear (T = 149− 178 MeV ) or a quadratic (T = 186− 195 MeV) function (blue dashed
line). The spectra from the 163 ×8 ensembles [6] are plotted as a black solid line.

ρ(λ ) has the following expansion near λ = 0 with delta-function, linear and constant terms,

ρ(λ ) = c0m̃2δ (0)+ c1λ + c2m̃+ · · · (3.3)

Equation 3.2 then implies that ∆π−δ will receive the following three contributions:

χπ −χδ
T 2 ≈ 4c0N2

τ +2c1N2
τ +πc2N2

τ ≡ χπ−δ
0 +χπ−δ

1 +χπ−δ
2 . (3.4)

Table 2 compares these three possible contributions to ∆π−δ with the corresponding values
extracted from correlator measurements on the 163 × 8 ensembles. Although the results do not
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T (MeV) β m̃ Zm χπ−δ
0 χπ−δ

1 χπ−δ
2 χcorr

149 1.671 0.00459 1.49 − 7.3(5) 174(4) 91(4)
159 1.707 0.004321 1.51 − 9.2(2) 84(2) 78(9)
168 1.740 0.00384 1.53 − 9.8(2) 22(2) 55(10)
177 1.771 0.00364 1.55 47 10.0(1) − 36(14)
186 1.801 0.00334 1.57 16 − − 6(2)
195 1.829 0.00302 1.58 14 − − 8(4)

Table 2: Comparison of ∆π−δ from three contributions computed from
the fitting of the eigenvalue density on the 323 × 8 ensembles to the
value extracted from correlator measurements on 163 × 8 ensembles
(χcorr). Here all results are renormalized to MS(µ = 2GeV) and the
renormalization factors for the quark mass Zm are presented as well.

N+ 0 1 2 3 4 5
N0 = 1 28 19 − − − −
N0 = 2 16 19 12 − − −
N0 = 3 4 11 8 3 − −
N0 = 4 1 3 4 3 0 −
N0 = 5 0 2 1 1 1 0

Table 3: Number of configura-
tions at 177 MeV carrying each of
the possible values for N0 and N+.
Here N0 and N+ are the total num-
ber of "near zero modes" and the
number of those modes with posi-
tive chirality respectively.

agree perfectly due to finite volume effects as well as our crude model, possible trends can be
observed. The constant term dominates below the transition region. In contrast, the singular term
becomes the major contribution well above the transition.

If this singular contribution results from exact zero modes and non-trivial topology, it should
diminish in proportion to 1/

√
V with increasing space-time volume. If this is the case and the

linear term truly vanishes, one might conclude that U(1)A is effective restored. However, if we
take a closer look at the eigenvalue distribution near the origin for T = 177−195 MeV (see Fig. 3
plotted versus Λ in order to preserve the otherwise distorted peak near the origin), rather than shrink
by a factor of

√
8, the integrated "near-zero modes" remain approximately the same size when the

volume has increased by a factor of 8. This ∝ V behavior is in accordance with the prediction of the
dilute instanton gas model, suggesting near zero modes coming from instantons and anti-instantons.
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Figure 3: (Left to right) The renormalized eigenvalue spectrum for T = 177−195 MeV without the removal
of the bare quark mass. Statistics are insufficient for 186 MeV on 163 × 8 ensemble; only 5 instances of
"near-zero modes" are collected.

Moreover, if these were exact zero modes forced by non-zero topology, they all should be of
the same chirality within one configuration. If they result from a dilute instanton gas, modes of pos-
itive and negative chiralities should appear with roughly equal numbers within one configuration.
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From the 177 MeV ensemble, we pick out "near-zero modes" whose chirality is greater than 0.7 in
magnitude and in Table 3 list the number of configurations showing each combination of total near
zero modes, N0, and number of positive chirality modes, N+. A binomial distribution consistent
with the dilute instanton gas model apparently describes the data better than a bimodal distribu-
tion required by exact zero modes, providing additional supporting evidence for the origin of these
"near-zero modes". Therefore, U(1)A symmetry probably remains broken at T = 177−195 MeV
due to a finite contribution from a dilute instanton gas.

4. Conclusion

With chiral symmetry under good control, our 323 ×8 simulations with domain wall fermions
provide important information about both the chiral and U(1)A symmetries in the vicinity of the
QCD phase transition. Chiral condensates and the disconnected susceptibilities are consistent with
results from 163 × 8 ensembles with a pseudo-critical temperature around 170 MeV. Large finite
volume effects are observed, especially below the transition.

The eigenvalue spectrum of the DWF Dirac operator is also utilized to study the breaking and
restoration of the symmetries that drive the transition. Evidence from a preliminary quantitative
analysis of the distribution of the low-lying eigenvalues suggests that U(1)A symmetry is not re-
stored in the region T = 177−195 MeV but is instead explicitly broken in a fashion consistent with
the dilute instanton gas model. We are looking forward to a simulation with physical pion masses
using Möbius fermions to confirm our findings.

I very much appreciate the help and advice from members of HotQCD and my advisors and
colleagues at Columbia University. This work was supported in part by U.S. DOE grant DE-FG02-
92ER40699. The simulations were carried out on the DOE- and RIKEN-funded QCDOC machines
and the NYBlue machine at BNL.
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