
P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
2
)
0
8
8

Auxiliary field Monte-Carlo study
of the QCD phase diagram at strong coupling ∗

Akira Ohnishi†
Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
E-mail: ohnishi@yukawa.kyoto-u.ac.jp

Terukazu Ichihara
Department of Physics, Kyoto University, Kyoto 606-8502, Japan
E-mail: t-ichi@ruby.scphys.kyoto-u.ac.jp

Takashi Z. Nakano
Yukawa Institute for Theoretical Physics & Department of Physics,
Kyoto University, Kyoto 606-8502, Japan
E-mail: t-nakano@ruby.scphys.kyoto-u.ac.jp

We investigate the QCD phase diagram in the strong coupling limit by using a newly developed
auxiliary field Monte-Carlo (AFMC) method. Starting from an effective action in the leading
order of the 1/g2 and 1/d expansion with one species of unrooted staggered fermion, we solve the
many-body problem exactly by introducing the auxiliary fields and integrating out the temporal
links and quark fields. We have a sign problem in AFMC, which is different from the original
one in finite density lattice QCD. For low momentum auxiliary field modes, a complex phase
cancellation mechanism exists, and the sign problem is not serious on a small lattice. Compared
with the mean field results, the transition temperature is found to be reduced by around 10 % and
the hadron phase is found to be extended in the larger chemical potential direction by around 20
%, as observed in the monomer-dimer-polymer (MDP) simulations.
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1. Introduction

QCD phase diagram is expected to have rich structure, extensively studied in current high-
energy heavy ion collision experiments, and closely related to compact astrophysical objects and
phenomena [1]. In the early universe as well as in heavy ion collisions at collider energies, the
quark gluon plasma evolves to hadronic matter via the crossover transition at small quark chemical
potential µ and high temperature T . The first order phase transition from hadronic to quark matter
may be realized in cold dense matter such as the neutron star core. The QCD critical point (CP)
connects these crossover and first order transitions, and characteristic large fluctuations of the order
parameter may be observed in heavy-ion collisions or in black hole formation processes [2].

The phase transition at finite density is, unfortunately, much less known compared with the
low density crossover transition. The sign problem of lattice QCD at finite µ makes it difficult to
perform precise calculations of dense cold matter. The cancellation of the statistical weight given
by the fermion determinant may not be just a technical problem, as recent studies suggest that we
cannot reach CP in phase quenched simulations [3]. Therefore we need to find other methods than
the phase quenched simulation in order to directly sample appropriate configurations in dense cold
matter for the discussion of CP and the first order transition.

One of the hopes may be found in the strong coupling lattice QCD. In the strong coupling
region, we can carry out the link variable integral prior to the fermion integral for each order of
the inverse squared coupling 1/g2 [4]. The QCD phase diagram has been studied under the mean
field approximation in the strong coupling limit (leading order, O(1/g0)) [5], the next-to-leading
order (NLO, O(1/g2)) [6], and the next-to-next-to-leading order (NNLO, O(1/g4)) [7]. We can
also take account of the fluctuation effects beyond the mean field approximation. We obtain the
effective action of quarks after the link variable integral, and the fermion integral leads to the
partition function in the form of sum over monomer-dimer-polymer (MDP) configurations [8].
The fluctuation effects are found to modify the phase diagram shape moderately: The transition
temperature is shifted to lower T direction by 10-20 %, and the hadronic phase expands to higher
µ direction by 20-30 % [9]. Until now, MDP simulation has been performed only in the strong
coupling limit, 1/g2 = 0. Since both finite coupling and fluctuation effects are important to discuss
the QCD phase diagram, we need to develop a theoretical framework which includes both of these
effects.

In this work, we develop an auxiliary field Monte-Carlo (AFMC) method for the strong cou-
pling lattice QCD. In AFMC, we carry out the integral over the auxiliary fields, which are intro-
duced to decompose the fermion composite product. In the mean field method, auxiliary fields are
introduced and assumed to be static and constant. Thus AFMC is a straightforward extension of
the mean field method, and may be also applicable to finite coupling cases. We discuss here the
QCD phase diagram in the strong coupling limit.

2. Auxiliary field Monte-Carlo method

We consider an asymmetric lattice (aτ = a/γ) of size L3 ×Nτ for color SU(Nc = 3) with one
species of unrooted staggered fermion in the strong coupling limit (SCL). Throughout this paper,
we work in the lattice unit a = 1, where a is the spatial lattice spacing. The lattice QCD action is
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given as

SLQCD =
1
2 ∑

x

[
V+

x −V−
x
]
+

1
2γ ∑

x, j
η j,x

[
χ̄xU j,xχx+ ĵ − χ̄x+ ĵU

†
j,xχx

]
+

m0

γ ∑
x

Mx , (2.1)

V+
x = eµ/γ2

χ̄xU0,xχx+0̂ , V−
x = e−µ/γ2

χ̄x+0̂U†
0,xχx , Mx = χ̄xχx , (2.2)

where χx and Uν ,x represent the quark field and the link variable, respectively, η j,x = (−1)x0+···+x j−1

is the staggered sign factor, and chemical potential µ is introduced in the form of the temporal
component of a vector potential. In SCL, we can ignore the plaquette action terms, which are pro-
portional to 1/g2. By integrating out spatial link variables, we obtain the SCL effective action [10],

Seff =
1
2 ∑

x

[
V+

x −V−
x
]
− 1

4Ncγ2 ∑
x, j

MxMx+ ĵ +
m0

γ ∑
x

Mx . (2.3)

Here we adopt the effective action in the leading order of the 1/d expansion, where d is the spatial
dimension, d = 3. The nearest neighbor four fermi interaction, the second term in Eq. (2.3), is
rewritten in the momentum representation as,

− 1
4Ncγ2 ∑

j,x
MxMx+ ĵ =− L3

4Ncγ2 ∑
k,τ

f (k)M−k,τ Mk,τ , f (k) = ∑
j

cos k j , (2.4)

where the Fourier transformation is defined as Mx=(x,τ) = ∑k eik·xMk,τ .
We shall now introduce auxiliary fields and decompose the interaction terms. We apply the ex-

tended Hubbard-Stratonovich (EHS) (or Hubbard-Stratonovich-Miura-Nakano-Ohnishi-Kawamoto)
transformation [6],

eαAB =

∫
dψdψ∗e−α[ψ∗ψ−Aψ−ψ∗B] , (2.5)

where dψ dψ∗= dReψ dImψ . By introducing two auxiliary fields simultaneously, we can bosonize
any kind of composite product. For the interaction term Eq. (2.4), we find that the positive and neg-
ative meson hopping matrix eigenvalues appear in pair, fk̄ =− fk with k̄ = k+(π,π,π). We refer
to the modes with momentum k satisfying f (k)> 0 and f (k)< 0 as positive and negative modes,
respectively. The bosonization of these terms is carried out as

exp
{

α f (k)
[
M−k,τMk,τ −M−k̄,τMk̄,τ

]}
=

∫
dσk,τ dσ∗

k,τ dπk,τ dπ∗
k,τ exp

{
−α f (k)

[
|σk,τ |2 + |πk,τ |2

+σ∗
k,τMk,τ +M−k,τσk,τ − i(−)τπ∗

k,τMk̄,τ − i(−)τM−k̄,τπk,τ
]}

, (2.6)

where k is chosen to be one of the positive modes, f (k)> 0. By construction, σk,τ and πk,τ satisfy
the relation σ−k,τ = σ∗

k,τ and π−k,τ = π∗
k,τ . The bosonized interaction terms are given as

SEHS
eff =

1
2 ∑

x

[
V+

x −V−
x
]
+∑

x
mxMx +

L3

4Ncγ2 ∑
k,τ, f (k)>0

f (k)
[
|σk,τ |2 + |πk,τ |2

]
, (2.7)

mx =
m0

γ
+

1
4Ncγ2 ∑

j

[
(σ + iεπ)x+ ĵ +(σ + iεπ)x− ĵ

]
, (2.8)

σx = ∑
k, f (k)>0

eik·xσk,τ , πx = ∑
k, f (k)>0

eik·xπk,τ , (2.9)
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where εx = (−)x0+x1+x2+x3 corresponds to Γ55 = γ5 ⊗ γ5 in the spinor-taste space. The lattice QCD
action Eq. (2.1) is invariant under the chiral U(1) transformation, χx → eiεxθ χx, and the chiral
transformation mixes σk,τ and πk,τ . Thus σk,τ and πk,τ at small k are regarded as the usual chiral
(σ ) and Nambu-Goldstone (π) fields, respectively.

We can carry out the Grassmann and temporal link (U0) integrals semi-analytically.

SAF
eff = ∑

k,τ, f (k)>0

L3 f (k)
4Ncγ2

[
|σk,τ |2 + |πk,τ |2

]
−∑

x
log

[
XNτ (x)

3 −2XNτ (x)+2cosh(3Nτ µ/γ2)
]
,

(2.10)

where XNτ (x) is a known function of mx [11], and we can obtain it by using a recursion formula
with Nτ steps. When mx=(x,τ) is independent of τ , we obtain XNτ = 2cosh(Nτ arcsinh mx).

We perform Monte-Carlo integral calculations over the auxiliary fields (σk,τ ,πk,τ) based on
the auxiliary field effective action Eq. (2.10). We refer to this treatment as an auxiliary field Monte-
Carlo (AFMC) method. We have made two approximations to obtain the effective action Eq. (2.3)
(leading orders of strong coupling expansion and 1/d expansion), whereas no approximations have
been invoked to calculate observables based on Seff in Eq. (2.3). One of the merit of AFMC in the
strong coupling limit is that the fermion matrix is decomposed into that at each spatial site. The
numerical cost is proportional to the space-time lattice volume multiplied by the one-dimensional
size, L3 ×Nτ × (L or Nτ). As in fermion many-body problems in other fields of physics, unfortu-
nately, we have a sign problem: The fermion self-energy mx is complex, and the second term in the
auxiliary field effective action SAF

eff Eq. (2.10) contains the imaginary part. As a result, the statistical
weight exp(−SAF

eff ) has a phase, coming from the negative modes πk,τ . This sign problem is weak-
ened in part by the phase cancellation mechanism. Since negative modes involve iεx, the phase on
one site from low momentum πk,τ modes is tend to be cancelled by the phase on the nearest neigh-
bor site. Phase from high momentum modes does not cancel, but we expect that high momentum
modes are less relevant to long wave phenomena such as the phase transition. Nevertheless, we
demonstrate that AFMC works in a small lattice such as 43 ×Nτ and 63 ×Nτ .

3. Phase diagram in AFMC

We discuss here the AFMC results of the phase diagram in the chiral limit (m0 = 0) on a small
lattice 43 ×Nτ and 63 ×Nτ . Following the arguments in [12], we assume the temperature is given
as T = γ2/Nτ .

In the left panel of Fig. 1, we show the average sign factor 〈cosθ〉, the root mean square

chiral condensate φ =
√

〈σ 2
k=0,τ +π2

k=0,τ〉, and the quark number density ρq, as functions of the

temperature on a 43×4 lattice. Lines connect fixed µ/T results. At small µ/T , φ and ρq smoothly
change around the transition temperature Tc. During this change, the φ 2 distribution is always
single peaked as shown in the right upper panel of Fig. 1. The peak at a finite φ at lower T moves
to the peak at φ = 0 at Tc. This behavior suggests that this transition is a would-be second order
transition, which could be the second order for a large enough volume. At large µ/T , we find
differences between the results starting from the Wigner phase and the Nambu-Goldstone phase
initial conditions (dashed lines), as far as the sampling steps are not very large. In the initial
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conditions, we set the auxiliary fields static and constant. We set σx = 0.01 and 1 in the Wigner
and Nambu-Goldstone phase initial conditions, respectively, and πx = 0 is taken in both types of
initial conditions. The φ 2 distribution becomes double peaked as shown in the right bottom panel
of Fig. 1. The initial condition dependence suggests the two states are separated by a high barrier
in the effective potential, and the transition is suggested to be would-be first order.

The average sign factor is large enough, 〈cosθ〉& 0.9, and there is practically no sign problem
on a small lattice. Generally, the average sign factor increases with increasing T for a fixed fuga-
sity, and increases with increasing µ except for the transition region. The global µ dependence is
understood from the form of the effective action. The imaginary part in SAF

eff comes from the auxil-
iary fields, and their effects becomes smaller at larger µ as we can find in Eq. (2.10). Around the
transition region, finite momentum modes will contribute, where the phase cancellation mechanism
does not work completely, and the average sign factor is suppressed.

We have evaluated the transition temperature based on the chiral susceptibility peak in the
second order region of µ/T , and by comparing the effective potential value at the local minima in
the first order region. In Fig. 2, we compare the AFMC phase boundary with that in the mean field
approximation [5] and in the MDP simulation [9]. As discussed in the previous works using the
MDP simulation [9], the transition temperature is found to be reduced at µ ' 0 by around 10 %,
and the hadron phase is found to be extended in the larger µ direction at low T .

In the strong coupling limit, the (would-be) first order phase boundary is insensitive to the
spatial lattice size; the phase boundary on the 63 ×4 lattice is almost the same as that on the 43 ×4
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Figure 1: Average sign factor (top), chiral condensate (middle), and quark number density (bottom) as
functions of temperature on a 44 lattice.
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Figure 2: Phase diagram

lattice, while the transition is found to be shaper on the 63 × 4 lattice. For larger Nτ lattices, the
transition chemical potential is found to be larger. Extrapolated results to Nτ = ∞ is consistent
with the continuous time MDP simulation [9]. These observations imply that AFMC can be a
promising tool to discuss finite density lattice QCD, and it can be an alternative method of the
MDP simulation.

4. Summary

We have discussed the QCD phase diagram by using the auxiliary field Monte-Carlo (AFMC)
method. Starting from an effective action Seff(χ, χ̄,U0) of quark and temporal link variables in the
leading order of the 1/g2 and 1/d expansion with one species of unrooted staggered fermion, we
obtain an effective action SEHS

eff (χ, χ̄,U0,σk,τ ,πk,τ) in the bi-linear form of quarks via the extended
Hubbard-Stratonovich transformation. Integral over the quark and temporal link variables is car-
ried out analytically, and the auxiliary field effective action SAF

eff (σk,τ ,πk,τ) is obtained. Finally, we
integrate out the auxiliary fields (σk,τ ,πk,τ) using the Monte-Carlo method. This procedure corre-
sponds to solving the many-body problem of Seff exactly. While we have a sign problem in AFMC,
the problem is not serious on a small lattice partly due to the phase cancellation mechanism of the
low momentum πk,τ modes. The phase diagram in AFMC is found to be compatible with that in
the monomer-dimer-polymer (MDP) simulations [9]. Thus the QCD phase diagram in the strong
coupling limit in MDP is confirmed to be correct.

We can extend AFMC to include finite coupling effects in a straightforward manner. The sign
problem with finite coupling or on a larger lattice, however, may be more severe. The present sign
problem comes from high momentum negative modes, then it is an interesting direction to study to
integrate out high momentum auxiliary field modes above a given cutoff in an approximate manner
such as in the saddle point method. Since the auxiliary fields introduced here are color singlet, the
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momentum cutoff does not violate the gauge symmetry. If the cutoff dependence is small, we hope
that it would be possible to evaluate the phase diagram on a large lattice at finite coupling with less
severe sign problem.
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