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We study two-color QCD with two flavors of Wilson fermion as a function of quark chemical

potentialµ and temperatureT. We find evidence of a superfluid phase at intermediateµ and

low T where the quark number density and diquark condensate are both very well described by

a Fermi sphere of nearly-free quarks disrupted by a BCS condensate. This gives way to a region

of deconfined quark matter at higherT and µ , with the deconfinement temperature decreasing

only very slowly with increasing chemical potential. We findthat heavy quarkonium bound states

persist in the S-wave channels at allT andµ , with an energy reflecting the phase structure. P-wave

states appear not to survive in the quarkyonic region.
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1. Introduction

Our understanding of the phase structure of QCD at high baryon densityand low temperature
remains severely hampered by the sign problem. In the absence of first-principles methods which
have been proven to circumvent this problem, we can study a related theory, QCD with colour
group SU(2) (QC2D), which does not suffer from the sign problem. This may firstly allow us to
confront model studies with lattice results, thereby constraining these modelsin their application to
real QCD, and secondly reveal generic features of the phase structure of strongly interacting gauge
theories, including the nature of deconfinement at high density.

Here we present an update of our ongoing investigation of the phase structure of QC2D as a
function of temperature and chemical potential [1, 2].

2. Simulation details

We study two-colour QCD with a conventional Wilson action for the gauge fields and two
flavours of unimproved Wilson fermion. The fermion action is augmented by a gauge- and iso-
singlet diquark source term which serves the dual purpose of lifting the low-lying eigenvalues of
the Dirac operator and allowing a controlled study of diquark condensation.Further details about
the action and the Hybrid Monte Carlo algorithm used can be found in [3]. Wehave performed
simulations atβ = 1.9,κ = 0.168, corresponding to a lattice spacinga= 0.178fm, determined from
the string tension, and a pion massamπ = 0.645 ormπ ≈ 710MeV. The ratio of the ground state
pseudoscalar to vector masses ismπ/mρ = 0.80 [4]. Our lattice volumes and the corresponding
values for temperaturesT, chemical potentialsµ and diquark sourcesj are given in table 1. All
results shown are extrapolated toj = 0 using a linear Ansatz except where otherwise stated.

Ns Nτ T (MeV) µa ja

16 24 47 0.3–0.9 0.04
12 24 47 0.25–1.1 0.02, 0.03, 0.04
12 16 70 0.3–0.9 0.04
16 12 94 0.2–0.9 0.02, 0.04
16 8 141 0.1–0.9 0.02, 0.04

Table 1: Lattice volumes and associated temperaturesT, chemical potentialsµ and diquark sourcesj.

3. Order parameters and phase structure

The left panel of fig. 1 shows the diquark condensate〈qq〉= 〈ψ2trCγ5τ2ψ1− ψ̄1Cγ5τ2ψ̄2tr〉 as
a function of chemical potential, for theNτ = 24,12 and 8 lattices. In the case of a weakly-coupled
BCS condensate at the Fermi surface, the diquark condensate, which isthe number density of
Cooper pairs, should be proportional to the area of the Fermi surface,ie 〈qq〉 ∼ µ2.

For the lowest temperature,T = 47 MeV (Nτ = 24), we see that〈qq〉/µ2 has a plateau in the
region 0.35. µa. 0.6. The increase forµa& 0.6 may be evidence of a transition to a new state of
matter at high density, although the impact of lattice artefacts cannot be excluded. The lower limit
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Figure 1: Left: The diquark condensate〈qq〉/µ2 extrapolated toj = 0 for Nτ = 24,12,8 (T = 47,94,141
MeV). Right: The renormalised Polyakov loop as a function ofchemical potential, for all temperatures. The
shaded symbols are forja = 0.04; the open symbols areja = 0.02. The filled black circles are the results
for the 163×24 lattice. The dashed line indicates the inflection point ofL at µ = 0. The inset shows the
unrenormalised Polyakov loop.

of the plateau roughly coincides with the onset chemical potentialµo ≈ mπ/2 ≈ 0.33a−1, below
which both the quark number density and diquark condensate are expected to be zero. We find no
substantial volume dependence at anyµ. Our results atT = 70 MeV (not shown here) are almost
identical to those atT = 47 MeV. At T = 94 MeV (Nτ = 12),〈qq〉 is significantly suppressed, and
drops dramatically forµa & 0.7. At T = 141 MeV (Nτ = 8) the diquark condensate is zero at all
µ, confirming that the system is in the normal phase at this temperature.

In the right panel of fig. 1 we show the order parameter for deconfinement, the Polyakov loop
L, for our four temperatures. It has been renormalised by requiringL(Ta= 1

4,µ = 0) = 1, see [1]
for details. We see that for each temperatureT, L increases rapidly from zero above a chemical
potentialµd(T) which we may identify with the chemical potential for deconfinement. In the
absence of a more rigorous criterion, we have taken the point whereL crosses the value it takes at
Td(µ = 0), Ld = 0.6 [1], to defineµd(T). The results are shown in fig. 2, with error bars denoting
the rangeLd =0.5–0.7. To more accurately locate the deconfinement line, we will need to perform
a temperature scan for fixedµ-values. This is underway.

The estimates of critical chemical potentials for deconfinement and superfluidity can be trans-
lated into a tentative phase diagram, shown in fig. 2. In summary, from the order parameters we find
signatures of three different regions (or phases): a normal (hadronic) phase with〈qq〉 = 0,〈L〉 ≈ 0;
a BCS (quarkyonic) region with〈qq〉 ∼ µ2 at lowT and intermediate to largeµ; and a deconfined,
normal phase with〈qq〉= 0,〈L〉 6= 0 at largeT and/orµ. After extrapolating our results toj = 0 we
see no evidence of a BEC region described byχPT, with〈qq〉 ∼

√

1−µ4
o/µ4 [5], in contrast with

earlier work with staggered lattice fermions [6]. This may be related to the largevalue ofmπ/mρ

in this study. Simulations with lighter quarks may yield further insight into this.

In the right panel of fig. 2 we show the static quark potential computed fromthe Wilson loop
at Nτ = 24, for µa = 0.3,0.5,0.7,0.9. We find that as we enter the superfluid region, the string
tension is slightly reduced, but that this is reversed asµ is increased further, leading to a strongly
enhanced string tension atµa = 0.9, which according to our analysis of the Polyakov loops should
be in the deconfined region. This agrees with the pattern that was already observed in [3]. We also
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Figure 2: Left: A tentative phase diagram, including the location of the deconfinement transition in the
(µ ,T) plane, determined from the renormalised Polyakov loop, andthe transition to the diquark condensed
〈qq〉 6= 0 phase. Right: The static quark potential computed from theWilson loop, for the 123×24 lattice
and different values ofµ .
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Figure 3: The quark number density divided by the density for a noninteracting gas of lattice quarks (left)
and continuum quarks (right).

find no significancej-dependence in our results. At present we do not have a good understanding
of why the static quark potential should become antiscreened at largeµ. Computing the static
quark potential using Polyakov loop correlators rather than Wilson loops may yield further insight
into this issue.

4. Equation of state

We now turn to the bulk thermodynamics of the system, and in particular the quarknumber
nq and the energy densityε. Fig. 3 shows the quark number densitynq for Nτ = 24,12 and 8,
extrapolated to zero diquark source, and normalised by the noninteractingvalue for lattice fermions
on the left and for continuum fermions on the right. The difference between the two gives an
indication of the lattice artefacts. We see that the density rises from zero atµ ≈ µo = 0.32a−1, and
for the two lower temperatures is roughly constant and approximately equalto the noninteracting
fermion density in the region 0.4. µa. 0.7. The peak atµa≃ 0.4 in theNτ = 24 data in the upper
panel is an artefact of the normalisation withnSB for a finite lattice volume: the raw numbers for
the 123×24 and 163×24 lattices are identical within errors, butnSB differs by about 50% around
µa = 0.4.
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Figure 4: The quark and gluon contributions to the energy density (left) and total energy density (right),
divided byµ4, for ja = 0.04 (open symbols) andj = 0 (filled symbols).

The density forNτ = 8 does not show any plateau as a function ofµ; instead,nq/nSB shows
a roughly linear increase in the region 0.4 ≤ µa ≤ 0.7. This is suggestive of the system being
in a different phase at this temperature. We also note thatnq/nSB for Nτ = 12 rises above the
correspondingNτ = 24 data forµa & 0.7, where, according to the results of Sec. 3, the hotter
system is entering the deconfined, normal phase.

These results lend further support to our previous conjecture that in theintermediate-density,
low-temperature region the system is in a “quarkyonic” phase: a confinedphase (all excitations are
colourless) that can be described by quark degrees of freedom.

The renormalised energy density can be derived by going to an anisotropic lattice formulation
with bare anisotropiesγg =

√

βt/βs,γq = κt/κs and physical anisotropyξ = as/aτ . In the isotropic
limit γq = γg = ξ = 1 the energy density is then given byε = εg + εq with

εg =
3

2a4

[

〈ReTrUi j 〉

(

∂β
∂ξ

−β
∂γg

∂ξ

)

+ 〈ReTrUi0〉

(

∂β
∂ξ

+β
∂γg

∂ξ

)]

, (4.1)

εq =
1
a4

[

κ−1 ∂κ
∂ξ

(

16+ 〈ψψ〉
)

−κ
∂γq

∂ξ
〈ψD0ψ〉

]

. (4.2)

We have determined the Karsch coefficients∂ci/∂ξ with ci = γg,γq,β ,κ by performing simulations
with γq,γg 6= 1. Our estimates for these coefficients are [1]

∂γg

∂ξ
= 0.90

+4
−14,

∂γq

∂ξ
= 0.13

+40
−5 ,

∂β
∂ξ

= 0.59
+0.24
−1.37,

∂κ
∂ξ

= −0.052
+69
−15. (4.3)

Our results for the energy density are shown in fig. 4. We see that the quark contribution is
negative for all values ofµ andT, but this is balanced by the positive gluon contribution, giving
a positive or zero total energy. The energy density is very sensitive to the values of the Karsch
coefficients [1]; for example, if∂γq/∂ξ is changed from the suprisingly low value of 0.13 to a
more ‘natural’ value of 0.8, we find thatεq > 0 for µa & 0.6.

5. Heavy quarkonium

We have investigated the heavy quarkonium spectrum by computing non-relativistic QC2D
correlators on ourNτ = 24, 16 and 12 lattices. We use anO(v4) lattice NRQCD lagrangian [7]
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Figure 5: Left: Temperature dependence of the1S0 state energy vs.µ for Ma = 5.0 with j = 0.04. Right:
The ratio∑x G(x,τ; µ)/∑x G(x,τ;0) for 1P0 correlators on 123×24 withMa = 5.0. Due to the noisiness of
the P-wave data, only a limitedτ range is shown.

to compute the heavy quark Green function; see [2] for further details. We find that the S-wave
correlators can be fitted with an exponential decay∝ e−∆Enτ even onceµ 6= 0; moreover the fits
are quite stable over large ranges ofτ, indicating thatS-wave bound states persist throughout the
region 47 MeV. T . 90 MeV.

Fig. 5 shows theT- and µ-dependences of the1S0 state energy∆E. We see that asµ is
varied, initially the1S0 state energy decreases from that atµ = 0, but onceµ reaches the region
µ1(≃ 0.5) ≤ µa ≤ µ2(≃ 0.85), the1S0 state energy stays roughly constant. Forµ > µ2, the1S0

state energy starts increasing again. In contrast to the observables studied in Secs 3 and 4, we find
no clear, systematic dependence on the diquark source term forµa . 0.5. For µa & 0.5 on the
other hand,∆E( ja = 0.02) < ∆E( ja = 0.04). This suggests that the energy, extrapolated toj = 0,
may continue to decrease up toµa≈ 0.7 before increasing.

As the temperature increases from 47 MeV (Nτ = 24) to 70 MeV (Nτ = 16) we find that
the point where the energy of the1S0 state starts increasing goes fromµa ≈ 0.7 to 0.55. This is
consistent with the estimate of the deconfinement transition in Sec. 3. ForNτ = 12 we do not yet
have any data in theµ-region which might confirm this. It is interesting to note that∆E increases
with increasingT, in accordance with what has been observed in hot QCD withµ = 0 [8].

In contrast to theS-waves, it is difficult to find stable exponential fits to theP-wave correlators
with the current Monte-Carlo data before statistical noise sets in, except for the caseµa≤ 0.25. In
the right panel of fig. 5 we instead show the ratios of the1P0 correlators at different valuesµ 6= 0
to the correlator atµ = 0. Note that any effect we observe is entirely due to the dense medium.

The S-wave correlator ratios show an increase withτ which corresponds to the negative1S0

energy difference∆E(µ)−∆E(µ −0) that was previously observed. In the quarkyonic region, the
P-wave ratios behave similarly to theS-wave, but in the deconfined region (µ ≥ µ2), theP-wave
ratios are non-monotonic, initially decreasing withτ before turning to rise above unity forτ/a∼ 4.
On the other hand, the P-wave correlator ratios on the 123×16 and 163×12 lattice show monotonic
behavior similar to those of the S-waves, suggesting a subtle interplay of density and temperature
effects on the P-wave states.
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6. Summary and outlook

From lattice simulations of dense QC2D at a range of temperatures, we have identified three
distinct regions of the phase diagram: a hadron gas at lowµ andT, a quarkyonic region at inter-
mediateµ and low to intermediateT, and a deconfined quark–gluon plasma at highT and/orµ.
Taking the limit of zero diquark source has served to make our identification of the quarkyonic
region more robust. Investigations into the exact nature and location of the deconfinement and the
superfluid to normal transitions are underway, as are simulations at smaller lattice spacings and
with smaller quark masses.
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