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1. Introduction

The renormalization group (RG) based technique of “latticematching" via block transforma-
tions relates physical quantities on different lattices. It thus provides a method for computation of
a physical quantity at different lattice spacings (couplings). To apply it one needs to implement RG
block transformations on the approach to the Wilsonian Renormalized Trajectory (RT). This can be
done in various ways. One way is numerical implementation ofthe RG blocking by Monte Carlo
RG (MCRG) techniques. This is the method that has mostly beenused in the literature. Another
approach is to implement blocking by explicit RG recursion relations that can, to varying degree,
be explicitly carried out by numerical-analytical means. This is the method followed here. Specif-
ically, we employ explicit RG recursion relations of the “potential moving" type. These block
transformations (decimations) are of course approximate but can, in principle, be systematically
improved. They turn out to be surprisingly effective. In thefollowing we apply lattice matching
of these decimations to obtain critical couplings and string tensions for theSU(2) andSU(3) pure
gauge theories. A more detailed account has appeared in [1].

2. RG blocking recursions and lattice matching

RG blocking recursionsWe start by assuming a general plaquette actionAp(Up,n) on lattice
of spacingbna given in terms of the character expansion of its exponential:

exp(−Ap(Up,n)) = ∑
j

d j Fj(n)χ j(Up) . (2.1)

The sum is over all inequivalent irreducible representations labeled byj, with charactersχ j of
dimensiond j . The action itself is, of course, completely specified by theset ofFj(n) coefficients,
and vice versa, and of the general form:

Ap(Up,n) = ∑
j

1
d j

β j(n)
1

2l j
[χ j(Up)+ χ j(U

−1
p )] (2.2)

with l j = 1 for self-conjugate andl j = 2 for non-self-conjugate representations. (ForSU(2), in
particular,l j = 1 for all j.)

It is useful to define an effective couplingg(n) characterizing a given action of the form (2.2):

β (n) =
2N

g(n)2
≡ 2N

d2Ap(eiθ m̂·t ,n)

dθ2

∣

∣

∣

∣

θ=0
. (2.3)

Here{t} are theSU(N) generators and ˆm a unit vector. ((2.3) is of course independent of the
directionm̂). In the perturbative regime this reduces to the usual definition of gauge coupling. In
the non-perturbative regime any definition of a ‘coupling’ is of course some scheme-dependent
choice. We adopt (2.3) to track the RG recursion flows; it provides an efficient parametrization of
the renormalized trajectory below.

The lattice block stepbna→ bn+1a may now be formulated as a prescription for the character
expansion coefficientsFj(n+1) in terms of theFj(n)’s:

Fj(n+1) =





∫

dU

[

∑
k

dk Fk(n)χk(U)

]ζ (d−2)

1
d j

χ∗
j (U)





r2

. (2.4)
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To complete the prescription we must specify the renormalization parametersζ , r. We take

ζ = b
[

1−cg(n)2
]

(2.5)

r = b
[

1−cg(n)2
]

(2.6)

with c an adjustable decimation parameter to be tuned for optimization as explained below. It is
convenient to work with normalized coefficientsf j = Fj/F0 by factoring out the trivial representa-
tion coefficient in (2.1). Effective couplings (2.3) are also conveniently computed directly in terms
of the{ f j}.

RG flows and lattice matchingConsider now a general lattice system described by an action
A(K) with set of couplingsK = {Ki}. Successive RG blockings by a scale factorb generate a flow
in action space:K → K(1) → K(2) → ··· → K(n) → ···, whereK(n) = {K(n)

i } denotes the couplings
aftern blocking steps. If flows fromK andK′ reach the same point on RT aftern andn′ steps, then

{K }i

{K j }

FP

KK

RT

Figure 1: Flows towards the RT from two different starting couplingsK andK′.

the corresponding lattice correlation lengthsξ , ξ ′ and spacingsa, a′ are related as

ξ ′ = b−(n−n′)ξ a′ = b(n−n′)a. (2.7)

To identify such pairs of couplings we need ascertain that aftern andn′ RG steps, respectively,
the same point is reached on the RT. This can be done in either of two ways: (i) show that the cor-
responding actions coincide:A(K(n)) = A(K ′(n′)). This requires that one obtain the blocked action
at each step; or (ii) show that the expectations of every operator, measured after performing the
corresponding number of blocking steps from the initial twoactions, agree. Either way, identifying
such pairs(K, n), and(K′, n′) is referred to as two-lattice matching [2].

If blockings are performed numerically by MCRG, the second method appears easier to use.
Obtaining the blocked action can be difficult, whereas it is possible, at least in principle, to generate
a Boltzmann-weighted configuration ensemble for the blocked action by instead blocking the con-
figurations of an ensemble generated from the original action. These can then be used to measure
observables [3]. In practice, of course, due to lattice sizelimitations, only a rather small number
of block steps is possible by MCRG, so getting close enough tothe RT is not guaranteed. As a
general observation, the location of the fixed point being block definition dependent, appropriate
fine-tuning of any decimation free parameters can be crucialfor achieving rapid approach in few
steps.
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Here we employ two-lattice matching with RG block transformations implemented by the
recursions (2.4) described above. They can be explicitly evaluated to any desired accuracy on
lattices of any size, so no inherent limitations due to finitesize arise. The blocked action resulting
after each RG step is explicitly obtained, so it can used to ascertain approach to the RT and perform
two-lattice matching. The transformations contain one parameter (cf. (2.5) - (2.6)), which should
be fixed for matching optimization.

A basic feature of our decimations is that, regardless of thechoice of the initial plaquette
action, a single step suffices to generate an action of the form (2.2) generally containing a large
(infinite) set of representations. This is important as flow in such a large-dimensional interaction
space makes it possible to avoid getting stuck at (finite-dimensional) lattice artifact boundaries.
Furthermore, MCRG construction of blocked actions [4] shows that one-plaquette terms with a
large number of characters are the most relevant action terms for long-scale dynamics. This is
precisely the type of action resulting from our decimations, and may be the reason for their apparent
efficacy in computing long-distance dynamics observables as seen below.

In the following the starting action for our decimations (n = 0) will always be taken to be the
fundamental representation Wilson action. (Other choicessuch as mixed actions containing several
representations can be treated in exactly the same way.) Onefinds that the flow under successive
decimations reaches a unique RT irrespective of such a choice, though of course the number of
steps needed to reach it depends on the initial point in action space. With the fundamental Wilson
action as the starting action the approach is found to be veryrapid as illustrated in Fig. 2.
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Figure 2: Flow from theSU(2) fund. Wilson action withβ = 4 (green dots) andβ = 2.5 (red dots) showing
rapid approach to the RT. First three non-trivial (normalized) expansion coefficients shown.

The effective coupling (2.3) provides a good way to label points along the RT. If, starting from
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some Wilson action couplingβ , aftern steps the pointβ (n)(β ) lies on the RT, subsequent RG steps
generate a sequence of pointsβ (n+1), β (n+2), · · · hopping along the RT. With scale factorb= 2, and
for all large and intermediate values ofβ (n), the effective beta function is varying slowly enough for
a linear interpolation to provide an excellent approximation to the RT points lying between pairs of
neighboring pointsβ (n),β (n+1).

The decimations become exact in theβ → ∞ limit. Computation of the step scaling function
(beta function) from the decimations in the weak coupling scaling region reproduces the perturba-
tion theory prediction to within 2%−3%. We next use them to obtain critical couplings and string
tensions by lattice matching for theSU(2) andSU(3) gauge theories.

3. Critical couplings and string couplings by two-lattice matching

3.1 Critical couplings

At physical temperatureT = 1/aNτ , lattice with temporal extentNτ , spacinga and lattice with
N′

τ , a′ are related by:

a′ =
Nτ
N′

τ
a. (3.1)

If after blockingn andn′ times, respectively, the two flows reach the same point on theRT, using
(2.7) this implies

n−n′ = logb

(

Nτ

N′
τ

)

. (3.2)

So, atT = Tc one has
β (n)(βc(Nτ)) = β (n′)(βc(N

′
τ)) . (3.3)

This suggests the following simple matching procedure.
(i) Assumingβc(Nτ) known for oneNτ , take

n = logbNτ +m

n′ = logbN′
τ +m (3.4)

Integerm= 0,1, . . . is chosen son,n′ large enough to be on the RT. (If the so-chosenn or/andn′

turn out to be non-integer, one performs[n] and[n]+1 steps, where[n] is the nearest integer to the
chosenn from below, and uses interpolation for the RT points in-between as mentioned above.)
(ii) With n, n′ andβc(Nτ) given, solve (3.3) forβc(N′

τ). This means that the starting point of the
flow on theN′

τ lattice is adjusted to satisfy (3.3).

3.2 String tensions (T = 0)

A similar procedure allows one to obtain string tensions by matching. Assume that two RG
flows from starting Wilson action atβ0 andβ1 end up at the same RT point aftern0 andn1 steps,
respectively. Then one has

β (n0)(β0) = β (n1)(β1) (3.5)

and
a1
√

σ = b(n0−n1)a0
√

σ (3.6)

Supposea0
√

σ known. Choosen0 large enough to be on the RT. Determinen1 so that (3.5) is
satisfied.a1

√
σ is then obtained directly from (3.6).
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3.3 Numerical results

It is important to maintain high accuracy in working with theexpansions (2.1) under blocking
iteration. ForSU(2) we typically use fifty group characters in the expansions (2.1). This implies
for, say,β = 5 omitted higher character coefficientsf j = Fj/F0, and accompanying bounds on the
series remainder, of the order of 10−45. For SU(3) we truncate (2.1) at charactersj ≡ (p,q) with
p≥ 20,q≥ 20; this implies remainders atβ = 10 of less than 10−12.

The scale factor is always taken to beb = 2. The adjustable parameter in the decimation
recursions (2.4) - (2.6) isc, which we set atc = 0.10 in the case ofSU(2) andc = 0.24 in the case
of SU(3). With no other parameters present, straightforward numerical evaluation of the recursion
relations can then be carried out.

We take one value ofβc(Nτ) from MC data, which serves to fix the scale and apply the pro-
cedure above to obtain critical coupling values for other lattices. Results forSU(2) are shown in
Table 1. Two sets of computedβc values are shown in Table 1 (columns 1 and 2) corresponding to
two different choices of the MC data point (underlined entries). The table also shows comparison
with the values obtained by MC simulation [5] - [7] in each case (column 3). The agreement is
very good - at the 2%− 3% level. Results for critical couplings in theSU(3) gauge theory are
displayed in Table 2. Agreement with MC simulation data [5] is again very good, typically within
a few percent.

Nτ βc βc βc(MC)

3 2.1875 2.1957 2.1768(30)
4 2.2909 2.2991 2.2991(02)
5 2.3600 2.3683 2.3726(45)
6 2.4175 2.4258 2.4265(30)
8 2.5097 2.5180 2.5104(02)
12 2.6355 2.6440 2.6355(10)
16 2.7275 2.7361 2.7310(20)
32 2.9487 2.9574

Table 1: Critical couplingsβc(Nτ) for SU(2) computed from lattice matching of decimations. Column 1
and 2 show the values obtained for two different choices (underlined entries) of the one data point taken
from MC data (see text). Column 3 shows the values from MC simulations for comparison.

String tensions inSU(3) obtained by the method above are displayed in the same formatin
Table 3. Very similar results are obtained forSU(2) [1]. Good agreement with MC data [7] - [9] is
again obtained in all cases.

Consideration of fermionic observables by similar RG recursion methods is a rather more
demanding proposition. Some preliminary attempts are reported in [10].

This work was partially supported by the NSF under NSF-PHY-0852438.
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