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Models of new physics indudéy — Ko mixing through operators having Dirac structures other
than the “left-left” form of the Standard Model. To carry dbe chiral-continuum extrapolation
of results from numerical simulations, one needs to knowdhark mass and lattice spacing
dependence of the corresponding B-parameters in the bagigenched theory at least at next-
to-leading order. For simulations using staggered fersignch as that we are doing with HYP-
smeared valence fermions on the MILC asqtad lattices) orst datermine this dependence using
staggered chiral perturbation theory (SChPT). We haveutatied the required dependence in both
SU(3) and SU(2) SChPT, working at next-to-leading orded ae give here an overview of the
methodology and results. The SU(3) SChPT result turns obetanuch simpler than that for
the Standard ModdBx operator, due to the absence of chiral suppression for tiveoperators.
The SU(2) SChPT result turns out to be closely related to fitwaByk: the chiral logarithms
are identical, up to an operator-dependent sign. Our suét also useful for fermions with
chiral symmetry as they provide, in the continuum limit, treetially quenched generalization of
existing continuum results.
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1. Introduction

Theories of physics beyond the standard model (BSM) ara diighly constrained by the ob-
served weakness of flavor-changing neutral processes. fine strongest constraints comes from
Ko — Ko mixing, both the CP-conserving and violating parts. Fonegimodel of new physics, in-
tegrating out heavy particles leads to a set of |d@= 2 operators with known Wilson coefficients.
In order to determine the constraint placed on the paramefahe model, one must calculate the
Ko — Ko matrix elements of thédS= 2 operators. This is a task for which lattice methods are
well suited, and several efforts are underwfly[J1}]2, 3]. Témuits will provide complementary
information to the direct searches for new physics at the IHC

Discretization effects and unphysically largeandd quark masses are important sources of
systematic error in these calculations, which fortunatelyg be largely eliminated by performing
chiral and continuum extrapolations with effective fieléohny as a guide. The need for controlled,
model-independent continuum extrapolations is partitylacute for our calculation because we
use rooted staggered quarks, and one must extrapolate hevajfécts of taste-breaking and root-
ing. To do this, one requires at least a next-to-leading roiideO) calculation in staggered chiral
perturbation theory (SChPT). Here we report on such a caticu, which has been recently pub-
lished [$]. We have presented results for both SU(3) and $8(hPT, i.e. treating the strange
quark as light and heavy, respectively. Our results arewdedul for describing data obtained with
other fermion discretizations, e.g. domain-wall fermidffils for we can turn off taste breaking and
determine the NLO predictions for a partially quenched (B@jtinuum theory in both SU(3) and
SU(2) cases.

Since all the technical details have been provided in IR&fws attempt here a complementary
discussion, focusing on the essential features and eschenost details. We also to correct some
minor shortcomings in the original discussion, which, heere lead to no changes in the final
results.

BSM theories lead tAS= 2 operators with Dirac structures which are not constratodthve
the “left-left” structure of the standard model (SM) operatVe adopt the basis

= [SVu(1— ) dY[Syu(1— y5)d], (1.1)
= [F(1— ) dY[S(1— y6)d°], (1.2)
= [Pou(1-165)d% [ oy (1 16)d”], (1.3)
= [F(1— ) dY[S(1+ y6)d°], (1.4)
05— [Syu(1- y5)d?)[Syu(1+ y5)d°], (1.5)

whereoyy = [yu, W|/2, anda andb are color indices. This basis was used in the highest-order
continuum calculations of anomalous dimensidijs [6], artiésmost natural choice for our stag-
gered calculation of the matrix elements, in which we mattio continuum operators using 1-loop
perturbation theory (PT]7].
Many authors, including Refd][fl, B, 5], use an alternatéstinsvhich O3 andOs are replaced
by
s = [S(1- ) d°)[S(1- y)d?, (1.6)

LFor a recent review of this complementary information ugimgfirst lattice results see Re|f| [4].
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O5 = [S'(1—y6)d"][S(1+ 6)d?, 1.7

We do not discuss the pros and cons of the two bases here,tkimchoice of basis turns out to
be irrelevant for the SChPT calculation the chiral behavior of the matrix elements of @nd G,
(and of G and Q) are identical. Thus the results presented here hold for either basis.

In the SM, only the operatdd; appears, its matrix element being parametrize@®byA large
effort by the lattice community has led to an accurate deteation of Bx. The matrix elements of
the other operators, which we call “BSM operators”, are ict fzasierto calculate on the lattice.
This is because they do not vanish in the SU(3) chiral linmit) ao have simpler chiral expansions.
Thus lattice results for the new matrix elements are follgywtlosely on the heels of those Bk .

As for Bk, calculating ratios of matrix elements is advantageousilse many lattice sys-
tematics and also some of the chiral logarithms cancel. datanratios for the BSM operators
are

_ (RolO(1)IKo)
Ko|Sysd?(1)|0) (0| ysdP (1) [Ko)
wherey is the renormalization scale. Note that, unlike By, the denominator does not vanish in

the SU(3) chiral limit. Below we present and discuss our ltisgor the chiral-continuum behavior
of theseB;.

Bj (“) = Nj< (N2a N?n N4a NS) = (5/3’ 4’ _2’ 4/3) ) (18)

2. Overview of methodology

Our numerical calculations use a mixed-action set-up witPksmeared valence staggered
guarks atop 2- 1 flavors of rooted asqtad sea quarks (MILC configurations).aiddw the valence
d ands masses, labeleah, andmy, respectively, to differ from the sea-quark masses, labelg
myg and ms. Although our present simulations hawg, = my, we consider the completely non-
degenerate case in the SChPT calculafion.

The calculation largely follows the methodology worked ouRef. [§] for B in PQ SChPT
and extended to mixed action SChPT in REJ. [9]. In most respthe calculation for the BSM
operators is more straightforward than thatBpr because the matrix elements do not vanish in the
SU(3) chiral limit. There is, however, an additional congplion whose origin is the non-trivial
mixing between the BSM operators in PT.

In a continuum ChPT calculation, one would proceed by firsppirag the continuum BSM
operators into chiral operators in the effective theoryd éimen calculating one-loop diagrams.
The operator mapping is done using transformation proggernder the chiral groupU(Ns), x
SU(N¢)r. To carry this over to staggered ChPT one must deal with aéeemplications:

e The presence of additional valence tastes implies thataied operators are, even in the
continuum limit, in a partially quenched theory with an egkd chiral group. Because
Fierz rearrangement differs in the presence of tastes, arst imroduce two down and two
strange valence field®g, D,, S andS,, where uppercase indicates a field with four tastes)
in order to have a theory in which Wick contractions can beamed with those of the

2All masses are in physical rather than lattice units in thiske.
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desired continuum theor§][8]. One must also choose the tddtee lattice operator—with
the standard choice being the Goldstone téste

e Taste-breaking in the staggered action away from the comtmlimit introduces additional
terms in the chiral Lagrangian which are proportionalafp and, in the standard power-
counting, these terms appear at leading order (LO) alonly i&itms proportional ton and

p? [LQ].

e The sea quarks are rooted and differ from the valence quafke rooting can be dealt
with in SChPT using the replica method of R¢f][11]. The migedon introduces further
complications[[P] that, however, turn out to be unimportéotthe BSM operators (though
not for Bk).

e Taste-breaking due either to the staggered action or inted by the use of inexact (i.e.
one-loop) matching leads to many new chiral operators. piafiferation of operators is a
major problem forBk [in SU(3) ChPT] but turns out to be a minor issue here as the new
operators only contribute to analytic terms at NLO in SCh&Ad(not to loops).

To deal with these complications one must follow a rathelb@late series of matching steps. The
details are given in Ref[]5]. Here we give only an overview.

We illustrate the required steps by focusing©s In step 1, we match from QCD to a PQ
continuum theory containing two valence down quatks, and two valence strange quarksp,
as well as their corresponding gho$tShe sea-quarks are as in QQOD;, then matches onto

05" = 2{[8(1- )] [B(1 - y6)§] + [S(1— o) (B2 — )]} (2.1)

The two terms correspond to the two types of Wick contractio@CD—note the[s;d;|[s,d;]
flavor structure in the second term. The overall factor of thpensates for an overall reduction
by 2 in the number of Wick contractions. This matching is @xaall orders in PT. The point of
this step is to separate the two Wick contractions, withaithaving to deal with any staggered
complications.

In step 2we stay in the same PQ continuum theory, but match onto apsraéving[s;d;|[Sd;]
form. This is in preparation for matching to the staggeresbty. The result is a linear combination
of four operators (note the different Dirac and color staies):

05%% = by (1 — y6)d][S5(1 — y)dB] + [ S (1 — y5) ) [ (1— ) i3] (2.2)
+ bs[S 0, (1— 15)02) (B0, (1 — v)d8] -+ bua[Sopy (1— y6) Y] [Bopv (1— y6)dg].  (2.3)

The coefficientd; have the forrrbﬁo) + abﬁl) + ... and the LO and NLO coefficents are known.

The b}o) can be obtained by a Fierz transform, while ﬁﬁ@ require a 1-loop calculation and one
must make a choice of evanescent operators.

3This discussion extends and corrects that of Fﬂzf. [5], smedave subsequently found that additional matching
steps (steps 1 and 2 below) are required. The final resultbaneever, unaffected. Details will be presented in .[13
4At this stage we can also let the valence and sea quark magfses d
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In step 3 we match onto the “staggered partially quenched” (SPQ)iconin theory, which
contains sea quarks$, D andSand valence quark®,» andS; > (with uppercase again indicating
four tastes) as well as sufficient ghosts (25 in all) to cabo¢h the valence determinant and the
contribution of 3 of the 4 tastes for each sea quark. Heresifoplicity, we drop the negative parity
parts of the operator, which do not contribute to the matiexreent we are ultimately interested in.
The operator matching is exemplified by

[SH(1-1) ] [B(1-y6)cf] — & {1812 &)DYS(12 &)DY + (S &)DHS (16 &)DY) | .

(2.4)
whereN; = 4 is the number of tastes. Here we are assuming external kddasteés created with
normalized operators. This matching is exact to all ordef®T. Each operator in the sufn (2.3) is
matched similarly and the coefficiertg are unchanged.

We are now ready to match, siep 4, to a lattice theory with rooted staggered (asqgtad) sea
quarksxu, Xa andxs and (HYP) valence quarkg1 > andxs; 2. Our continuum operator from step
3 is in the form that is used in practice in staggered lattigleldations of matrix elements. The
matching from the continuum PQ theory to the lattice thesrfat present) done at 1-loop in PT.
At this order ina, a large number of lattice operators contribute to the matghalthough most
have the wrong taste and are dropped in humerical calcakati®he form of the lattice operators
that are kept is described in Ref] [5]. The errors that amihtced at this stage have the form

OfAT = OP"?+ ¢(a) [wrong taste ofis+ ¢'(a?,a%)[various taste ops (2.5)

whereZ indicates that matrix elements (rather than operatorsheirey matched.

In step 5we match onto the Symanzik effective continuum theory desay the long distance
degrees of freedom of the lattice theory. Lattice symmetaiee used to determine corrections to
the action and operators, and factorsadfre now explicit.

Finally, in step 6 we match onto the chiral effective theory (SChPT), usingcthieal transfor-
mation properties of the action and operators. This prosesgaightforward, though tedious. A
crucial step in this matching (which we do not have space teranto) is that certain symmetry
properties of the original operator percolate through thetipie steps and constrain the low-energy
constants (LECs) that multiply the chiral operators, réagithe number of independent constants.
The details of this are slightly modified from the discussiomRef. [§] by the addition of steps 1
and 2, but the final conclusion is the same.

With the chiral form of the operators in hand, the requisite-boop calculation is now straight-
forward. We have done this in SU(3) SChPT, and obtained th@)Stésult using the method
explained and justified in Refq] [B, 5].

3. Resultsand conclusions
The general form of the NLO result in SChPT is
B = B} |1+ 5B+ 5B . (3.1)
The analytic terms involve five unknown LECs at NLO:

OB = ¢j3 (M + my) + Cja(My -+ My + M) + Cjza’ + Cjadg + Cjsar®. (3.2)
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Here we have shown the SU(3) result; for SU(2)iyeandms terms are absent (and the coefficients
are different). The first two terms are present in the continuwhile the remaining three represent
lattice artifacts. The? term comes from standard discretization errors (which atesnppressed

by a since our valence fermions are not fully improved). Be= a?a? term comes from taste-
breaking discretization errors, which are numerically amted such that they are comparable to
standard¢(a?) errors. Finally, thea? term arises because we use 1-loop operator matching—it
would be absent if we used non-perturbative renormalinatio

These analytic terms are similar to thoseBgrand one can deal with them in a similar fashion.
In a chiral extrapolation at fixed the last three terms are constants and can be absorbeEJLﬁ’].to
These terms then enter into a (fairly complicated) contmuwaxtrapolation.

The non-analytic terms are completely predicted in termthefpion decay constant in the
appropriate chiral limit {3 or f;) and the masses of the valence and sea pions. They lead to
curvature in the predicted chiral behavior. We show exgji@nly the SU(2) result foNs =2+ 1
(which is the most useful in practice):

5Bljog: 47-[f2 [ 16g€ MXX;B +5 {€ x>cl+(M xxl)( xxl)} . (3-3)

HereMyxg is the LO mass of the valence pion of tasteB andMy is the LO mass of the taste-
singlet sea-quark pion. The chiral logarithms &%) = X In(X/u)%) and/(X) = —d¢(X)/dX. The
+ sign holds forj = 2 and 3, while the- sign applies forj = 4 and 5.

Key features of this result are:

e The chiral logarithms forj = 2 and 3 (and forj = 4 and 5) are identical because the
chiral transformation properties of these pairs of opesatwe the samd [L2]. This holds
generally—i.e. also for SU(3) SChPT, and irrespective gfatferacies in sea-quark masses.

e The j = 2,3 andj = 4,5 cases differ only in sign. This relationship doest hold for the
SU(3) result.

e The chiral log forj = 2, 3 is identical to that foBk. This identity doesothold for the SU(3)
result.

e The result is unaffected by the use of a mixed action—thiy anpacts some coefficients
in 6B‘]?‘”a' as well as the values of the pion masses and decay constasiconitiusion holds
also for the SU(3) result (but not f@).

In Ref. [B] we present also the SU(2) result for non-degemesaa quarks, and the SU(3) result
both forN; = 1+ 1+ 1 andN; = 2+ 1. We only note here that the SU(3) chiral logarithms for the
BSM operators are much simpler than thoseBgr The latter involve 13 additional LECs, whereas
the former involve none. This simplicity can be traced baxkhe fact that the matrix elements of
the BSM operators do not vanish in the SU(3) chiral limit.

Some time ago, Becirevic and Villadoro (BV) calculated théra logarithms for the BSM
operators in continuum, unquenched SU(3) ChPT [12] (resutiich we use as a check on ours
in the appropriate limit). They noted that the chiral logfamiss cancel in the ratid3,/B; and
B4/Bs. They dubbed these ratios “golden” and advocated theirruseinimizing errors in chiral
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extrapolations. Our results allow us to extend the set ofiggolcombinations. First (and this is
almost trivial) the two golden ratios of BV remain golden ietPQ theory, and in SU(2) ChPT.
Second, the rati®,/Bx becomes golden in SU(2) ChPT. Finally, the prodBsB, is also golden
in SU(2) ChPT. Neither of these new combinations is golde8lit{3) ChPT, although there is a
partial cancellation of chiral logarithms (and so in BV'glgace they are “silver” combinations).
These golden combinations could be particularly imporfant calculation using staggered
fermions. This potential importance arises because chigarithms are responsible for a signifi-
cant fraction of the taste breaking in tBg (since the pion masses entering the logarithms are taste
dependent). Thus the chiral behavior of the golden comioingtmay be smoother and easier to
fit. One need only fit one of the five B-parameters includingaiiHbgarithms, determining the
other four using golden ratios or products. We are preseeadiing this approach in our companion
numerical calculation[]3].
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