
P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
2
)
1
1
9

Semileptonic B to D decays at nonzero recoil with
2+1 flavors of improved staggered quarks: An
update

Si-Wei Qiu
Physics Department, University of Utah, Salt Lake City, UT 84112, USA
E-mail: siwei.qiu@utah.edu

Carleton DeTar∗†
Physics Department, University of Utah, Salt Lake City, UT 84112, USA
E-mail: detar@physics.utah.edu

Daping Du

Department of Physics, University of Illinois, Urbana, IL 61801, USA

Andreas S. Kronfeld

Fermi National Accelerator Laboratory, Batavia, IL 60510, USA

Jack Laiho

SUPA, Department of Physics and Astronomy, University of Glasgow, Glasgow, Scotland, UK

Ruth S. Van de Water

Fermi National Accelerator Laboratory, Batavia, IL 60510, USA

(Fermilab Lattice and MILC Collaborations)

The Fermilab Lattice and MILC collaborations are completing a comprehensive program of
heavy-light physics on MILC (2+1)-flavor asqtad ensembles with lattice spacings as small as
0.045 fm and light-to-strange-quark mass ratios as low as 1/20. We use the Fermilab interpre-
tation of the clover action for heavy valence quarks and the asqtad action for the light valence
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of the semileptonic decay B→ D`ν at nonzero recoil.
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Semileptonic B to D decays at nonzero recoil Carleton DeTar

1. Introduction

The CKM matrix element |Vcb| is a key quantity in Standard-Model tests. It normalizes the legs
of the unitarity triangle. The dominant uncertainty in |Vcb| comes from theoretical determinations
of the hadronic form factors for B→ c`ν + . . . . The exclusive processes B→ D`ν and B→ D∗`ν
[1, 2, 3] can be studied in lattice gauge theory. Here we report on results for B→ D`ν . Lattice
calculations at zero recoil typically have the smallest errors. However, because of the phase space
suppression near zero recoil in B→ D`ν , experimental errors are largest there. Thus, we aim to
work at nonzero recoil where the combined experimental and theoretical error is minimized. This
work updates our previous report [4] with all ensembles now included in the analysis.

The differential decay rate dΓ(B→D`ν)/dq2 is, for m2
` �min(M2

B,q
2), proportional to | f+|2

for `= e,µ , where for q = pB− pD,

〈D(pD)|V µ |B(pB)〉= f+(q2)

[
(pB + pD)

µ −M2
B−M2

D

q2 qµ

]
+ f0(q2)

M2
B−M2

D

q2 qµ . (1.1)

Here V µ = b̄γµc is the b→ c vector current and f+ and f0 are the vector and scalar form factors,
respectively. The alternative form factors h+ and h− are convenient:

〈D(pD)|V µ |B(pB)〉√
MBMD

= h+(w)(v+ v′)µ +h−(w)(v− v′)µ , (1.2)

where v = pB/MB and v′ = pD/MD. They are related to f+ and f0 through

f+(q2) =
1

2
√

r
[(1+ r)h+(w)− (1− r)h−(w)] ,

f0(q2) =
√

r
[

w+1
1+ r

h+(w)−
w−1
1− r

h−(w)
]
, (1.3)

where r = MD/MB and q2 = M2
B +M2

D−2wMBMD or w = v · v′.

2. Lattice-QCD calculation

We are carrying out calculations on 14 lattice ensembles generated in the presence of 2+ 1
flavors of improved (asqtad) staggered sea quarks [7] with light-quark masses and lattice spacings
shown in Fig. 1.

In the B meson rest frame for any recoil D-momentum p we can obtain h+ and h− from matrix
elements of the current starting from ratios of lattice matrix elements R+ and R−, and x f , where

R+(p) ≡
〈
D(p)|V 4|B(0)

〉
R−(p) ≡

〈
D(p)|V 1|B(0)

〉
〈D(p)|V 4|B(0)〉

x f (p) ≡
〈
D(p)|V 1|D(0)

〉
〈D(p)|V 4|D(0)〉

(2.1)

w(p) = [1+ x f (p)2]/[1− x f (p)2]

h+(w) = R+(p)[1− x f (p)R−(p)]

h−(w) = R+(p)[1−R−(p)/x f (p)] .
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Semileptonic B to D decays at nonzero recoil Carleton DeTar

Figure 1: Left panel: parameters of the 14 lattice ensembles in this study. Plotted are values of the light to
strange sea quark mass ratio m`/mh vs. the approximate lattice spacing in fm. Right panel: example from
the a = 0.06 fm, m`/mh = 0.15 ensemble with T = 24,25. Upper curve: the zero-recoil double ratio, middle
curve: the ratio R+(p, t)/R+(0, t) for the 1S smeared D-meson interpolator, and bottom curve: the local
interpolator. Red points are included in the fit (p = 0.15).

At zero recoil, we can also use the double ratio of Hashimoto et al [5]:

|h+(1)|2 =
〈
D(0)|V 4|B(0)

〉〈
B(0)|V 4|D(0)

〉
〈D(0)|V 4|D(0)〉〈B(0)|V 4|B(0)〉

. (2.2)

The continuum V µ and lattice V µ currents are matched through V µ

cb = ZV µ

cb
V µ

cb. We use a
mostly nonperturbative method [5], writing

ZV µ

cb
= ρV µ

cb

√
ZV 4

cc
ZV 4

bb
, (2.3)

and determine ρV µ

cb
from one-loop lattice perturbation theory.

In addition to the two-point functions, we need matrix elements 〈Y (p)|V µ |X(0)〉 for X ,Y ∈
{B,D}. They are constructed from naive light spectator quark propagators and clover heavy quark
propagators in the Fermilab interpretation [6] as shown in Fig. 2. Valence bottom and charm quark
masses were tuned to the “kinetic” Bs and Ds masses. The mass of the naive light spectator quark
is set equal to that of the light sea quark.

For interpolating operators OX , we compute two-point and three-point functions

C2pt,X(p, t) =
〈
O†

X(0)OX(t)
〉
, (2.4)

C3pt,X→Y,µ(p;0, t,T ) =
〈
O†

Y (0)V
µ(t)OX(T )

〉
. (2.5)

We use both point and 1S smeared interpolating operators for the D meson and 1S smeared inter-
polating operators for the B.

3



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
2
)
1
1
9

Semileptonic B to D decays at nonzero recoil Carleton DeTar

(t)Vt = 0 T

BD

µ

clover b

light naive

clover c

Figure 2: Valence quark line diagram for B→ D.

2.1 Two-point and three-point correlator fits

We obtain the lattice form factors via a two-step procedure. First, we fit the B- and D-meson
two-point correlators to obtain the energies and overlap factors. Then we use these determinations
as constraints (with Bayesian priors) in the three-point fits. For illustration, we show the reduction
of the three-point and two-point functions to obtain R+(p) =

〈
D(p)|V 4|B(0)

〉
. We include excited

B and D contributions indicated with a prime but not both together:

C3pt,B→D
V 4 (p, t) =

√
ZD(p)

e−EDt
√

2ED

〈
D(p)|V 4|B(0)

〉 e−mB(T−t)
√

2mB

√
ZB(0)

+
√

ZD′(p)
e−ED′ t
√

2ED′

〈
D′(p)|V 4|B(0)

〉 e−mB(T−t)
√

2mB

√
ZB(0) (2.6)

+
√

ZD(p)
e−EDt
√

2ED

〈
D(p)|V 4|B′(p)

〉 e−mB′ (T−t)
√

2mB′

√
ZB′(0) ,

or

C3pt,B→D
V 4 (p, t) =C0(p)

〈
D(p)|V 4|B(0)

〉
e−EDte−mB(T−t)

[
1+C1(p)e−∆EDt +C2(p)e(t−T )∆mB

]
,

(2.7)
where C0(p), ∆ED = ED′−ED, and ∆mB = mB′−mB come from fits to two-point correlators. Terms
oscillating as (−)t (not shown) are introduced by the naive light quark. We suppress their contri-
butions by averaging over T , T +1 and t, t +1, as introduced in [1].

Putting information from three- and two-point functions together, we get

R+(p, t) ≡
C3pt,B→D

V 4 (p, t)e(ED−mB)t+(mB−mD)T/2√
C3pt,D→D

V 4 (0, t)C3pt,B→B
V 4 (0, t)

√
ZD(0)ED

ZD(p)mD

≈ R+(p)
[
1+ s1(p)e−∆EDt + s2(p)e(t−T )∆mB

]
. (2.8)

The zero-recoil form factor h+(0) = R+(0) can be calculated very accurately from the double ratio.
A good strategy is to use it to normalize the nonzero recoil values:

R+(p, t)
R+(0, t)

=
R+(p)
R+(0)

exp(δmt)+A(p)exp(−∆EDt)+B(p)exp(∆mBt) , (2.9)

where δm= 0, ∆ED =ED′−ED, and ∆mB =mB′−mB are constrained by fits to two-point functions.
We do a simultaneous fit to three three-point functions, as illustrated in the right panel of Fig. 1

and determine R+, R−, and x f for each momentum (recoil parameter w), from which we determine
h+ and h−.

4



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
2
)
1
1
9

Semileptonic B to D decays at nonzero recoil Carleton DeTar

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1  1.05  1.1  1.15

w

B2D h+

physical value
0.12fm 0.1ms
0.12fm 0.14ms
0.12fm 0.2ms
0.12fm 0.4ms
0.09fm 0.1ms
0.09fm 0.15ms
0.09fm 0.2ms
0.09fm 0.4ms
0.09fm 0.05ms
0.06fm 0.2ms
0.06fm 0.4ms
0.06fm 0.14ms
0.06fm 0.1ms
0.045fm 0.2ms -0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

 1  1.05  1.1  1.15

w

B2D h-

Figure 3: Form factors h+ (left) and h− (right) as a function of the recoil parameter w. The curves in each
panel are a result of a simultaneous fit to the chiral-continuum expressions of Eq. (2.10) with p = 0.68 for
the h+ fit and p = 0.41 for the h− fit.

2.2 Chiral-continuum extrapolation and q2 parameterization

The resulting form factors h+ and h− are shown in Fig. 3. We fit them to the expressions

h+(a,m`,w) = 1−ρ
2
+(w−1)+ k+(w−1)2 +

X+(Λχ)

m2
c

+ c1,+m`+ ca,+a2 + ca,w,+a2(w−1)

+
g2

D∗Dπ

16π2 f 2 logs1−loop(Λχ ,w,m`,a) (2.10)

h−(a,m`,w) =
X−
mc
−ρ

2
−(w−1)+ k−(w−1)2 + c1,−m`+ ca,−a2 + ca,w,−a2(w−1)

for light spectator quark mass m`, lattice spacing a, and w = v · v′. For the one-loop chiral logs we
use a staggered fermion version of Chow and Wise [9]. Thus, these fit functions contain the correct
next-to-leading-order chiral perturbation theory expressions, including staggered discretization ef-
fects [10]. As can be seen, the dependence of h+ on a and m`/mh is quite mild. We expect h−
to have larger discretization effects than h+ because of different HQET power counting. This is
consistent with what we see in the data. For |Vcb|, the contribution coming from h− over the entire
kinematic range is small, so the larger errors in h− don’t increase the overall error much. These
features with 14 ensembles are consistent with our previous findings with four ensembles [10].

To compare the lattice and experimental form factors we need to extrapolate to larger w (equiv-
alently q2). We do this using the z-expansion of Boyd, Grinstein and Lebed [11], which provides a
model-independent parameterization of the q2 dependence of f+ and f0. This expansion builds in
constraints from analyticity and unitarity. It is based on the conformal map

z(w) =
√

1+w−
√

2
√

1+w+
√

2
, (2.11)

5



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
2
)
1
1
9

Semileptonic B to D decays at nonzero recoil Carleton DeTar

 0.5
 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

 1.05
 1.1

 1.15
 1.2

 1.25
 1.3

 0  0.01  0.02  0.03  0.04  0.05  0.06  0.07

fo
rm

 f
a
c
to

r

z value

B->D zexpansion χ
2
/dof=5.9/3

f+
f0

Figure 4: Left: form factors f+ and f0 parameterized by the z expansion (p = 0.12). Right: comparison
with experimental results from the Babar collaboration [12]. The red line gives our result. The red dotted
lines show only statistical errors. The boxed region appears to have the smallest combined error.

which maps the physical region w ∈ [1,1.59] to z ∈ [0,0.0644]. It pushes poles and branch cuts far
away at |z| ≈ 1. Form factors are then parameterized as

fi(z) =
1

Pi(z)φi(z)

∞

∑
n=0

ai,nzn , (2.12)

where Pi(z) are the Blaschke factors and φi are the “outer functions”. The latter are chosen to
simplify the unitarity bound:

∑
n
|ai,n|2 ≤ 1 . (2.13)

In practice, we need only the first few coefficients in the expansion. We also impose the kinematic
constraint f+ = f0 at q2 = 0 or z≈ 0.0644.

To implement the z expansion, we start from the value of f+ and f0 at the physical point, as
determined from the chiral/continuum fit. We choose four w values, w = 1.00, 1.04, 1.10, and 1.16,
and use the corresponding form factor values to determine the coefficients ai,0, ai,1, and ai,2. These,
then, are used to parameterize the form factors over the full kinematic range, as shown in the left
panel of Fig. 4.

We compare our result with experimental measurements from the Babar collaboration [12] in
Fig. 4. For present purposes we take |Vcb| from B→ D∗`ν at zero recoil [3].

3. Future plans

To complete the analysis, we need to apply small corrections resulting from adjusting the
charm and bottom quark masses to their tuned values, implement the full current renomalization,
and compile a complete error budget.

6



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
2
)
1
1
9

Semileptonic B to D decays at nonzero recoil Carleton DeTar

Acknowledgements

Computations for this work were carried out with resources provided by the USQCD Collab-
oration, the National Energy Research Scientific Computing Center and the Argonne Leadership
Computing Facility, which is funded by the Office of Science of the U.S. Department of Energy;
and with resources provided by the National Institute for Computational Science and the Texas
Advanced Computing Center, which are funded through the National Science Foundation’s Tera-
grid/XSEDE Program. This work was supported in part by the U.S. Department of Energy under
grant No. DE-FG02-91ER40677 (D.D.) and the U.S. National Science Foundation under grants
PHY0757333 and PHY1067881 (C.D.) and PHY0903571 (S.-W.Q.). J.L. is supported by the STFC
and by the Scottish Universities Physics Alliance. This manuscript has been co-authored by em-
ployees of Brookhaven Science Associages, LLC, under Contract No. DE-AC02-98CH10886 with
the U.S. Department of Energy. Fermilab is operated by Fermi Research Alliance, LLC, under
Contract No. DE-AC02-07CH11359 with the United States Department of Energy.

References

[1] C. Bernard et al. [Fermilab Lattice and MILC Collaborations], Phys. Rev. D79 014506 (2009).
[arXiv:0808.2519 [hep-lat]].

[2] J. Laiho, R. S. Van de Water, Phys. Rev. D73, 054501 (2006). [hep-lat/0512007].

[3] J. A. Bailey et al. [Fermilab Lattice and MILC Collaborations], PoS(Lattice 2010)311 (2010)
[arXiv:1011.2166 [hep-lat]].

[4] Si-Wei Qiu et al. [Fermilab Lattice and MILC Collaborations], PoS(Lattice 2011)289 (2011)
[arXiv:1111.0677 [hep-lat]].

[5] S. Hashimoto, A. S. Kronfeld, P. B. Mackenzie, S. M. Ryan, and J. N. Simone, Phys. Rev. D66,
014503 (2002). [hep-ph/0110253]; J. Harada, S. Hashimoto, A. S. Kronfeld, and T. Onogi, Phys.
Rev. D 65, 094514 (2002) [hep-lat/0112045].

[6] A. X. El-Khadra, A. S. Kronfeld, P. B. Mackenzie, Phys. Rev. D55, 3933-3957 (1997).
[hep-lat/9604004].

[7] T. Blum et al. [MILC Collaboration], Phys. Rev. D 55, 1133 (1997) [hep-lat/9609036].
C. W. Bernard et al. [MILC Collaboration], Phys. Rev. D 58, 014503 (1998) [hep-lat/9712010].
K. Orginos et al. [MILC Collaboration], Phys. Rev. D 59, 014501 (1999) [hep-lat/9805009].
J. F. Lagaë and D. K. Sinclair, Phys. Rev. D 59, 014511 (1999) [hep-lat/9806014]. G. P. Lepage,
Phys. Rev. D 59, 074502 (1999) [hep-lat/9809157]. K. Orginos et al. [MILC Collaboration],
Phys. Rev. D 60, 054503 (1999) [hep-lat/9903032].

[8] A. Bazavov et al., Rev. Mod. Phys. 82, 1349 (2010) [arXiv:0903.3598 [hep-lat]].

[9] C. K. Chow and M. B. Wise, Phys. Rev. D 48 (1993) 5202 [arXiv:hep-ph/9305229].

[10] J. A. Bailey et al., Phys. Rev. D 85, 114502 (2012) [Erratum-ibid. D 86, 039904 (2012)]
[arXiv:1202.6346 [hep-lat]].

[11] C. G. Boyd, B. Grinstein and R. F. Lebed, Phys. Rev. Lett. 74, 4603 (1995) [hep-ph/9412324].

[12] B. Aubert et al. [BABAR Collaboration], Phys. Rev. Lett. 104, 011802 (2010) [arXiv:0904.4063
[hep-ex]].

7

http://arxiv.org/abs/arXiv:0808.2519
http://arxiv.org/abs/hep-lat/0512007
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(Lattice 2010)311
http://arxiv.org/abs/arXiv:1011.2166
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(Lattice 2011)289
http://arxiv.org/abs/arXiv:1111.0677
http://arxiv.org/abs/hep-ph/0110253
http://arxiv.org/abs/hep-lat/0112045
http://arxiv.org/abs/hep-lat/9604004
http://arxiv.org/abs/hep-lat/9609036
http://arxiv.org/abs/hep-lat/9712010
http://arxiv.org/abs/hep-lat/9805009
http://arxiv.org/abs/hep-lat/9806014
http://arxiv.org/abs/hep-lat/9809157
http://arxiv.org/abs/hep-lat/9903032
http://arxiv.org/abs/arXiv:0903.3598
http://arxiv.org/abs/hep-ph/9305229
http://arxiv.org/abs/arXiv:1202.6346
http://arxiv.org/abs/hep-ph/9412324
http://arxiv.org/abs/arXiv:0904.4063
http://arxiv.org/abs/arXiv:0904.4063

