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Multi-baryon systems Kostas Orginos

1. Introduction

The calculation of properties of multi-baryon systems in lattice QCD is in many aspects a very
challenging problem. However, several lattice calculations have recently been performed indicating
that certain properties are calculable with current resources and methodologies [1, 2, 3, 4, 5, 6, 7, 8].
The many body nature of this problem seem to be at the core of the difficulties encountered in
present works. Both the construction of relevant interpolating fields and correlation functions, as
well as the Monte-Carlo evaluation of the path integral that defines them are quite challenging.

Here we present a systematic method for the construction of nuclear interpolating fields for
multi-baryon systems in lattice QCD (LQCD) (see Ref. [9] for related work). In addition, we
present an approach for performing the relevant contractions which scales only polynomially in the
number of quarks involved in the contraction. Using these methods we compute LQCD correlation
functions with the quantum numbers of the light nuclei, 4He, 8Be, 12C, 16O and 28Si, demonstrating
that correlation functions relevant to the study of nuclei in QCD can be constructed. A more
detailed presentation of this work can be found at [10].

2. Nuclear Interpolating fields

In order to calculate nuclear correlation functions, we first need to construct quark level nuclear
interpolating fields. This is in principle straightforward and in practice it resembles the construction
of quark model wave-functions for baryons [11]. A general quark-level nuclear interpolating field
with atomic number A containing nq = 3A quarks has the form

¯N h = ∑
a

w
a1,a2···anq
h q̄(a1)q̄(a2) · · · q̄(anq) , (2.1)

where the q̄ai are the quark fields, the ai are generic indices which combine the colour, spinor,
flavour, and spatial indices of the quark and a is a compound index representing the nq-plet a1,a2 · · ·anq .
Given that calculations are performed on a discrete lattice, the spatial degrees of freedom are fi-
nite and countable, and as a result we can use an integer index to describe them. Here the quark
fields are all at the same time t. The index h on the nuclear interpolating field is a set of quan-
tum numbers that identify the nuclear state, including its momentum, angular momentum, isospin
and strangeness. The Grassmannian nature of the quark field dictates that the tensor w

a1,a2···anq
h is

totally antisymmetric under the exchange of any two indices. If the indices ai can have a total of
N possible values, then, ignoring the detailed flavour structure, the total number of non-vanishing
terms, taking into account Grassmanian interchange symmetry, in the above sum is N!

nq!(N−nq)!
. The

first major reduction to the above number of terms comes from the fact that only colour singlets
need to be considered. In addition, considering only interpolating fields of definite parity, angular
momentum 1, isospin and strangeness, forces several elements of the tensor w

a1,a2···anq
h to vanish.

Finally, the most drastic reduction of the non-zero tensor elements can be achieved using simple
spatial wave-functions. At this time, having recognised that only a small fraction of the terms in the
sum of Eq. 2.1 are non-zero, as well as the fact that the tensor w

a1,a2···anq
h is totally anti-symmetric,

we can introduce the reduced weights w̃
(a1,a2···anq ),k
h which are the minimal set of non-zero numbers

1For simplicity, we refer to the irreducible representation of the lattice symmetry group as angular momentum.
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required to completely describe the interpolating field. The nq-plet (a1,a2 · · ·anq), is an ordered
list of indices that represents a class of terms in Eq. 2.1 that are all permutations of each other.
The index k on the reduced weights enumerates the number of classes that the tensor w

a1,a2···anq
h

decomposes into. With these reduced weights, Eq. 2.1 can be re-written as

¯N h =
Nw

∑
k=1

w̃
(a1,a2···anq ),k
h ∑

i
ε

i1,i2,···,inq q̄(ai1)q̄(ai2) · · · q̄(ainq
) , (2.2)

where Nw is the total number of reduced weights, i represents the nq-plet (i1, i2 · · · inq) and ε
i1,i2,···,inq

is a totally anti-symmetric tensor of rank nq with ε1,2,3,4,···,nq = 1 . The above expression is the
simplest form of the quark-level nuclear interpolating field and is completely described by the
reduced weights. Using a single point spatial wave function, the numbers of terms contained in the
interpolating fields for the proton, deuteron, 3He and 4He, are Nw = 9, 21, 9, and 1, respectively.

Having now written down a general nuclear interpolating field with quantum numbers h, we
need to calculate the reduced weights w̃

(a1,a2···anq ),k
h in an efficient manner. In principle, this can be

achieved directly from quark fields by imposing the desired transformation properties. However, in
certain cases, it is advantageous to proceed by first constructing hadronic interpolating fields from
which the quark interpolating fields are derived. The hadronic interpolating fields assume a form
analogous to that of the quark interpolating fields. The baryons that make up the nucleus are also
fermions, hence the general structure outlined above can be directly transcribed here. In terms of
baryons, a nuclear interpolating field of a nucleus of atomic number A is

¯N h =
Mw

∑
k=1

W̃ (b1,b2···bA)
h ∑

i
ε

i1,i2,···,iAB̄(bi1)B̄(bi2) · · · B̄(biA) , (2.3)

where Mw is the number of hadronic reduced weights W̃ (b1,b2···bA)
h , B(bi) are baryon interpolating

fields and the bi are generic indices that includes parity, angular momentum, isospin, strangeness,
and spatial indices. Unlike the quark fields which are fundamental degrees of freedom, the baryon
interpolating fields are composite objects, hence there is a large number of such interpolating fields
for a given set of quantum numbers. For simplicity, as well as efficiency of the resulting nuclear in-
terpolating fields, we will use a single interpolating field per baryon, selected to have good overlap
with the single baryon ground state, as well as being comprised of a small number of quark level
terms. The utility of the above form of the nuclear interpolating fields is twofold. Firstly, it allows
us to derive the reduced weights we need for Eq. 2.2. Secondly, interpolating fields that are derived
starting from Eq. 2.3 may have better overlap with the nuclear ground states as it is well-known
that hadronic degrees of freedom provide a successful description of much of nuclear physics.

The calculation of the reduced weights, W̃ (b1,b2···bA)
h , in the hadronic interpolating field is

straightforward. It amounts to combining individual hadrons of given quantum numbers to build a
multi-hadron state of definite parity, angular momentum, isospin, and strangeness. This construc-
tion can be readily automated and can be performed recursively using the known Clebsch-Gordan
coefficients of SU(2) for both the spin and isospin (or SU(3) flavour if so desired).

We have written a c++ symbolic manipulation program that generates the hadronic reduced
weights using the above approach. In Ref. [8], we have used this to produce a complete basis
of orthonormal interpolating fields with spatial wave-functions restricted to a single point for all
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nuclei up to A = 4 and have also constructed a selection of states for A > 4. Generically for larger
A, more complicated spatial wave-functions are required because of the Pauli exclusion principle,
resulting in an exponential growth of the number of possible interpolating fields as A increases (this
reflects the problem faced in nuclear structure calculations as A becomes large).

The reduced weights of the quark interpolating fields of Eq. 2.2 can be calculated by equating
the two forms of the nuclear interpolating fields as described in Ref. [10].

3. Multi-baryon contractions

In this section, we consider how the interpolating fields presented in the previous section can
be used to generate the correlation functions of multi-baryon systems. A general multi-hadron two
point function is given by

〈N h
1 (t) ¯N h

2 (0)〉=
1
Z

∫
DU DqD q̄ N h

1 (t) ¯N h
2 (0) e−SQCD , (3.1)

where SQCD and Z are the QCD action and partition function respectively, and DU , DqD q̄ are
the gluon and quark field integration measures respectively. We have also introduced explicit de-
pendence of the interpolating fields on the Euclidean time separation, t, and consider a two point
function with different creation and annihilation interpolating fields with commensurate quantum
numbers. For a given choice of the interpolating fields, it is straightforward to perform the Grass-
mann integral over the quark fields and re-write the correlation function in terms of the quark
propagators. However, for an efficient calculation of the two point function we need to be mindful
of the structure of the interpolating fields.

One successful class of interpolating fields for two or more hadron systems is one in which a
plane wave basis at the level of the hadronic interpolating fields is used. This amounts to project-
ing the individual hadrons comprising the multi-body system to definite momentum states, while
preserving the spatial transformation properties of the overall multi-hadron system. In this case,
the complexity of the spatial wave-function is such that the number of terms contributing to Eq. 2.2
is rather large and hadronic interpolating fields have to be used in order to build the desired two
point function. Using this type of interpolating fields at the sink while using simple spatial wave
functions for the source allows for efficient computations of correlation functions for nuclei up to
atomic number A = 5. These methods were used in the recent NPLQCD work that can be found in
Ref. [12, 13]. For more details of how this approach is implemented we refer to [10].

Here we will focus on a method appropriate to atomic numbers, A ≥ 5. It is straightforward
to see that by making use of Wick’s theorem [14], the numerator of Eq. 3.1 performing only the
integration over quark fields takes the form

[
N h

1 (t) ¯N h
2 (0)

]
U

= e−Se f f [U ]
N′

w

∑
k′=1

Nw

∑
k=1

w̃
′(a′1,a′2···a′nq ),k′

h w̃
(a1,a2···anq ),k
h ×

∑
j

∑
i

ε
j1, j2,···, jnq ε

i1,i2,···,inq S(a′j1 ;ai1)S(a′j2 ;ai2) · · ·S(a′jnq
;ainq

) , (3.2)

where the primed and unprimed indices are associated with the sink and source interpolating fields,
respectively and are composite colour, spinor, flavour and spatial indices and [. . .]U indicates the

4



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
2
)
1
4
7

Multi-baryon systems Kostas Orginos

value of the enclosed expression on a fixed gauge field. In addition, Se f f [U ] denotes the pure gauge
part of the QCD action together with the logarithm of the determinant of the Dirac matrix and
S(a′;a) denotes the quark propagator. The above expression of Wick’s theorem, can be written in
terms of the determinant of a matrix G whose matrix elements are given by

G(a′;a) j,i =

{
S(a′j;ai) for a′j ∈ a′ and ai ∈ a
δa′j,ai otherwise

, (3.3)

where, as before, a′ = (a′1,a
′
2 · · ·a′nq

) and a = (a1,a2 · · ·anq). Note also that the non-trivial block of
the matrix G(a′;a) is of size nq×nq, hence for computing its determinant we only need to consider
this block. For this reason, in the following discussion, the matrix G(a′;a) denotes only this small
non-trivial block.

Making use of this definition, the full nuclear correlation function can be written as

〈N h
1 (t) ¯N h

2 (0)〉=
1
Z

∫
DU e−Se f f

N′
w

∑
k′=1

Nw

∑
k=1

w̃
′(a′1,a′2···a′nq ),k′

h w̃
(a1,a2···anq ),k
h ×detG(a′;a) . (3.4)

The determinant of a matrix of size nq can be evaluated in n3
q operations (for example via LU

decomposition) instead of the naive nq! operations, so making use of this representation of the
nuclear correlation function is numerically advantageous. Furthermore, because of the flavour-
blindness of the strong interaction, the matrix G(a′;a) is block diagonal, as a result the determinant
calculation breaks into a product of smaller determinants, one for each flavour.

Given the reduced weights determined above and appropriate quark propagators, the imple-
mentation of Eq. 3.4 is very fast, scaling polynomially with the number of terms in the source and
sink quark level interpolating fields as well as the number of quarks per flavour. The total cost of
this form of contractions scales as n3

un3
dn3

s ×N′
wNw , where N′

w Nw are the number of terms in the
sink and source quark interpolating fields respectively.2 As a result, if we can construct interpolat-
ing fields with sufficiently small number of terms, correlation functions with a very large atomic
number A can be constructed.

4. Nuclear correlation functions

We have performed preliminary studies to investigate the numerical efficiency of these meth-
ods. Results for the quark-hadron approach have been presented in Ref. [8] and here we focus on
the determinant-based approach. Calculations are performed on an ensemble of gauge configura-
tions generated with a tadpole-improved Lüscher-Weisz gauge action and a clover fermion action
with tadpole-improved tree-level clover coefficient. The gauge links entering the fermion action
are stout smeared, with ρ = 0.125. Three flavours of quarks with masses corresponding to the
physical strange quark mass were used. The lattice spacing, a ∼ 0.145 fm, and the dimensions of
the lattice are L3 ×T = 323 × 48 corresponding to a physical volume of (4.6 fm)3 × 7.0 fm. We
have performed a large number of measurements from spatially distinct sources on an ensemble

2The expectation of polynomial scaling of contractions was noted by D. B. Kaplan in Ref. [15]. However, the
scaling of Nw and N′

w with the atomic number A is generically exponential.
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Figure 1: Correlation functions for nuclear systems, 4He, 8Be, 12C, 16O and 28Si.

of a O(250) gauge configurations well separated in HMC evolution time. All calculations are per-
formed in double precision and care is taken to preserve the dynamic range of correlation functions
by rescaling quark propagators before contractions are performed.

In Fig. 1, the logarithms of correlation functions are shown for correlators with the quantum
numbers of the light nuclei, 4He, 8Be, 12C, 16O and 28Si. Error bars that reach the lower axis of the
plots indicate that the correlator has fluctuations that are negative at one standard deviation. The
extracted energies for each of the atomic number A < 20 systems are consistent with a system of A
nucleons but with large uncertainties at present (for 28Si, no flattening of the effective mass is seen
before the signal is lost). Given the large number of near-threshold energy levels expected in these
complex nuclear systems (see Ref. [8] for an example for A = 4), a clean extraction of the ground
state binding energies of these systems is beyond the current work. In addition, the baryon number
density of the larger systems (0.3 fm−3 for 28Si) is substantial and volume effects are expected to
be significant. It will be necessary to use larger volumes, increase greatly the statistical precision
and improve the interpolating operators that we have used in order to obtain the binding energies
and excitation spectra of these systems. Nevertheless, this study demonstrates the computational
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feasibility of lattice QCD calculations of light nuclei.

5. Conclusions and outlook

In this talk, we have discussed a systematic way of constructing interpolating fields for multi-
baryon systems and, have investigated methods of performing the Wick contractions with these
interpolating fields in lattice QCD. We have found approaches that enable the calculation of two
point functions for systems with large atomic number A, in a computationally feasible manner. In
addition, we have demonstrated their effectiveness by calculating correlators with baryon number
up to A = 28. Given the expected finite volume spectra of such complex systems, significant
advances are required in order to extract ground state energies from these correlators. Finally, the
methods described here may prove useful in calculations of QCD at non-zero baryon density, where
projection on to a given baryon number is required.
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