
P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
2
)
1
5
4

Radiative improvement of spin and Darwin terms in
the NRQCD action

T.C. Hammant a, A.G. Hart b, G.M. von Hippel∗c, R.R. Horgan a, C.J. Monahan d

a Department of Applied Mathematics and Theoretical Physics, University of Cambridge,
Cambridge CB3 0WA, UK
b Cray Exascale Research Initiative Europe, JCMB, King’s Buildings, Edinburgh EH9 3JZ, UK
c Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
d Department of Physics, College of William and Mary, VA 23187-8795, USA
hippel@kph.uni-mainz.de

We present updated results for the radiative improvement of the σ ·B term and the spin-dependent
four-fermion terms in the lattice NRQCD action, and first results for the radiative corrections to
the NRQCD Darwin term and spin-independent four-fermion terms. The spin-dependent terms
have significant impact on getting the correct hyperfine splitting for both bottomonium and heavy-
light mesons, while the spin-independent terms suffer from a conspiracy between lattice artifacts
and severe IR divergences that complicates their evaluation.
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1. Motivation

Non-Relativistic QCD (NRQCD) [1] has been used successfully to describe both quarkonia
and Bq mesons. However, until recently, only the tree-level NRQCD action has been used. What is
now known is that the radiative improvement of the coefficient of the σ ·B operator in the NRQCD
action and the inclusion of spin-dependent four-fermion operators into the action have a significant
effect on the value of the bottomonium hyperfine splitting [2]. Here we present an update on
the improvement of the σ ·B and four-fermion operators, as well as first results for the radiative
improvement of the Darwin term in the NRQCD action.

2. Matching NRQCD to QCD in Background Field Gauge

The NRQCD action used by the HPQCD collaboration is

S = ∑
~x,τ

ψ
†(~x,τ) [ψ(~x,τ)−K(τ)ψ(~x,τ)]

with the kernel

K(τ) =

(
1− δH|τ

2

)(
1− H0|τ

2n

)n

U†
4 (τ−1)

(
1− H0|τ−1

2n

)2(
1− δH|τ−1

2

)
,

where

H0 =
∆(2)

2M0
, δH =−c1

(∆(2))2

8M3
0

+ c2
ig

8M2
0

(
~∆± ·~E−~E ·~∆±

)

−c3
g

8M2
0
~σ ·
(
~∆±×~E−~E×~∆±

)
− c4

g
2M0

~σ ·~B+ c5a2 ∆(4)

24M0
+ c6a

(∆(2))2

16nM2
0

and n≥ 3/(M0a) is a stability parameter used to avoid the well-known instability of the Euclidean
Schrödinger (i.e. diffusion) equation. The normalization of the operators is chosen such that the
tree-level matching of NRQCD to QCD (which can be performed e.g. by a Foldy-Wouthuysen-Tani
transformation) gives ci = 1+O(αs).

In order to match NRQCD to QCD at the one-loop level, we have to determine the radiative
corrections to ci by demanding that some suitably chosen set of renormalized S-matrix elements
agree to one-loop accuracy when calculated in QCD and NRQCD. For the quark bilinear terms
in δH, we can use quark scattering off a background field for this purpose. Hence we are led to
demand that QCD and NRQCD give the same effective potential after non-relativistic reduction,
i.e. that the following diagram commutes:

QCD NR reduction−−−−−−−→
using ci

tree-level
NRQCD

1PI

y y1PI

Γ −−−−−−−→
NR reduction

ΓNR

(2.1)
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2.1 The Background Field Method

The effective potential in the presence of a classical background field Φ is defined by

e−Γ[Φ] =
∫

1PI

Dφ e−S[Φ+φ ] ,

where the path integral over the quantum fluctuations φ only makes sense in perturbation theory
restricted to 1PI diagrams.

In a gauge theory, we can decompose the gauge potential into a background and a quantum part
as Aµ = Bµ + gqµ . BRST invariance of the classical action S guarantees that all D ≤ 4 operators
appearing in the effective action Γ are gauge covariant, implying the renormalizability of the theory.
The D > 4 operators that will appear in Γ are, however, not necessarily gauge covariant.

As an effective theory, NRQCD contains D> 4 operators in the classical action S, where gauge
covariance can be imposed at tree level. At the loop level, gauge covariance must also be retained to
avoid serious complications (even though the appearance of gauge-noncovariant operators would
not render the theory invalid in and of itself, keeping track of their gauge dependence would be
highly cumbersome). As has been shown long ago, [3], this can be achieved by using background
field gauge (BFG).

Background field gauge is defined by the gauge fixing function

f (A) = DB
µqµ = (∂µ + iBµ)qµ ,

and hence not only the propagator, but also the three- and four-gluon vertices of the form qqB and
qqBB are gauge-parameter dependent.

An important feature of BFG which we will exploit in the following is that it leads to QED-like
Ward identities and finite counterterms, so that we can compute all diagrams numerically, and do
not need to calculate the gauge field renormalization. This is practical in particular for checking
the gauge-parameter independence of our results (note that c4 and c2 should be gauge-parameter
independent, since they are directly related to physical mass splittings).

To employ the background field method on the lattice, the gauge link is decomposed into the
ordered product

Uµ(x) = eg0qµ (x+ 1
2 µ̂)eBµ (x+ 1

2 µ̂)

leading to a dependence of the Feynman rules on the number of background and quantum fields
(qqq, Bqq, BBq, etc.), as well as to the appearance of different terms for different orderings (Bqq,
qBq, qqB, etc.) contributing to the same vertex. Background field gauge (BFG) is defined by the
gauge fixing function

f (A) = DB
µqµ(x) =

[
qµ(x)− e−Bµ (x− µ̂

2 )qµ(x− µ̂)eBµ (x− µ̂

2 )
]

which on the lattice affects all vertices with exactly two quantum gluons.
The automated derivation of Feynman rules with background fields, as well as the use of BFG,

has been implemented in the HiPPY/HPsrc packages for automated lattice perturbation theory [4].
Lattice gauge theories in BFG are renormalizable [5]. Checking that the gauge dependences of

our results match for individual terms, and that their sum is non-trivially gauge independent, gives
us confidence in the correctness of the results.
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(a)(a) (b)(b)

(c)(c) (d)(d)

(e)(e) (f)(f)

Figure 1: The one-particle irreducible diagrams entering the matching of the σ ·B and Darwin terms in
NRQCD at the one-loop level. On the QCD side, only diagrams (a) and (b) need to be computed, while
in NRQCD all diagrams contribute; note that diagrams (c)–(f) contain not only lattice artifacts, but also
physical contributions from higher orders in 1/m.

2.2 Matching the spin and Darwin terms

The effective action for continuum QCD contains terms of the form

Γ[Ψ,Ψ,A] = ΨF1(q2) 6DΨ+Ψ
F2(q2)σ µνFµν

2M
Ψ+ . . .

which after renormalization and non-relativistic reduction give

(1+F2(0)F1(0)−1︸ ︷︷ ︸
=bσ

)ψ†
R
~σ ·~B
2MR

ψR

for the σ ·B term in ΓNR, and

(1−8M2
RF ′1(0)+2F2(0)︸ ︷︷ ︸

=bD

)ψ†
R

(
−gq2A0

8M2
R

)
ψR

for the Darwin term. A straightforward continuum calculation gives

b(1)σ =

(
3

2π
log

µ

M
+

13
6π

)
α b(1)D =

(
− M2

πµ2 −
7M
4µ
− 1

π
− 50

9π
log

µ

M

)
α

On the other hand, the effective action for NRQCD contains the terms

Γ[ψ,ψ†,A] = c4ZNR
σ ψ

† iσ · (q∧A)
2M

ψ− c2ZNR
D ψ

† gq2A0

8M2 ψ + . . .

4



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
2
)
1
5
4

Radiative Improvement of NRQCD G.M. von Hippel

which after renormalization give

Γ
NR[ψR,ψ

†
R,A] = c4ZNR

σ ZNR
2 ZNR

m ψ
†
R

iσ · (q∧A)
2MR

ψR− c2ZNR
D ZNR

2 (ZNR
m )2

ψ
†
R

gq2A0

8M2
R

ψR + . . .

Equating the corresponding terms in ΓNR gives the matching conditions

c4ZNR
σ ZNR

2 ZNR
m = 1+bσ

c2ZNR
D ZNR

2 (ZNR
m )2 = 1+bD

which yield c(0)i = 1 at tree-level, and at one-loop order (with Z = 1+δZ)

c(1)2 = b(1)D −δZNR,(1)
D −δZNR,(1)

2 −2δZNR,(1)
m

c(1)4 = b(1)σ −δZNR,(1)
σ −δZNR,(1)

2 −δZNR,(1)
m

In lattice NRQCD, we also need to take into account contributions from mean-field improvement
U 7→U/u0 in δZNR,(1)

σ ,D,m besides the diagrammatic contributions.

2.3 Four-Fermion Operators

Beyond tree level, the NRQCD action also contains four-fermion terms

L4 f = d1
αs

M2 (ψ
†
χ
∗)(χ t

ψ)+d2
αs

M2 (ψ
†
σ χ
∗)(χ t

σψ)

+d3
αs

M2 (ψ
†ta

χ
∗)(χ tta

ψ)+d4
αs

M2 (ψ
†
σta

χ
∗)(χ t

σta
ψ)

which can be rearranged by a Fierz transformations into

L4 f = a1
g2

M2 (χ
†
χ)(ψ†

ψ)+a8
g2

M2 (χ
†tt

aχ)(ψ†taψ)

+b1
g2

M2 (χ
†
σ
∗
χ)(ψ†

σψ)+b8
g2

M2 (χ
†
σ
∗tt

aχ)(ψ†
σtaψ)

where the coefficients di are linear combinations of the coefficients ai, bi, with the latter directly
computable from the box diagrams of fig. 2.

In addition to the box diagrams, there are additional contributions to di from QQ annihilation,
which is possible in QCD, but not in NRQCD. For our purposes, the relevant contribution is

dann
1 =− 2αs

9M2 (2−2log2).

3. Divergences and artifacts

The calculated quantities in both QCD and NRQCD are IR divergent. We can use a gluon mass
µ to regulate these divergences, since in the absence of ghost loops, all gluon lines are attached to
a conserved current removing the unphysical longitudinal mode contributions. The NRQCD con-
tribution then contains an IR logarithm log(µa), which combines with the IR logarithm log(µ/M)

from the QCD side to give the expected logarithmic log(Ma)-dependence for the matching coeffi-
cient.
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(a)(a) (b)(b)

(c)(c) (d)(d)

Figure 2: The one-particle irreducible diagrams entering the matching of the four-fermion interactions in
NRQCD. In QCD, only the box and cross-box diagrams contribute, while in NRQCD all diagrams must be
computed.

= + . . .

Figure 3: A graphical depiction of the lattice artifact contribution from the insertion of the gluon self-energy
on a single Coulomb exchange line.

On the other hand, any power divergences must match between QCD and NRQCD. The spin-
independent part contains power IR divergences up to M3/µ3, whereas the spin-dependent part is
much more mildly divergent, with IR divergences only up to M/µ . We treat the power divergences
by subtracting the known divergences analytically from the NRQCD integrands before performing
the loop integrations.

This is enough to make the spin-dependent part well-defined. In the spin-independent part,
however, the presence of k2a2 lattice artifacts can move the leading IR divergences to lower order,
leaving an apparently meaningless (Ma)2 log(µa) overall divergence in the sum of the box dia-
grams. The origin of this artifact divergence can be seen to be from the octet Coulomb exchange; it
cancels against the artifact divergence arising from inserting the self-energy a2 correction on a sin-
gle Coulomb exchange line, which also contributes to the lattice artifacts of the spin-independent
four-fermion term. Since the spin-independent part is numerically very difficult to evaluate due to
the presence of these artifact divergences, the results for the spin-independent part are still under
review.

4. Physical Impact

The bottomonium hyperfine splitting (HFS) receives a contribution ∼ c2
4 from single-gluon

exchange, which is corrected by the spin-dependent four-fermion interaction ∼ (d1−d2). Empir-
ically, the latter contribution is found to reduce the lattice-spacing dependence; a larger value of
the four-fermion coefficients also partially compensates for the smaller HFS found when including
spin-dependent O(v6) terms [6]. The physical impact of the radiation improvement is significant:

6
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the measured 1S HFS ∼ 60 MeV is corrected to 70 MeV, in agreement with experiment [7]. In
addition, the HPQCD prediction [8] of 35(3)(1) MeV for the 2S HFS including the radiative cor-
rections agrees with the newest Belle results [9].

In the heavy-light case, the HFS ∼ c4 receives no four-fermion contribution. HPQCD finds
good agreement with experiment for the Bd , Bs HFS when including the radiative corrections to c4,
and is able to make a prediction for the Bc HFS [10].

The impact of the Darwin term is much less noticeable: the bottomonium S-wave energy shift
∼ c2 constitutes a very small effect except on very coarse lattices.

5. Conclusions

We have extended the radiative improvement of σ ·B term and spin-dependent four-fermion
terms in the NRQCD action to the n = 4 v4 and v6 actions, and have computed the radiative im-
provement of the NRQCD Darwin term for the n = 4 v4 action. We are currently computing the
Darwin term of the v6 action, as well as the spin-independent four-fermion terms.

The spin-dependent terms have a significant physical impact: in fact, the agreement of the
theory with experiment depends on radiative improvement. The spin-independent terms are more
subtle to compute, but have much smaller effects on heavy-quark spectra.
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