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1. Introduction

As the lightest non-valence quark in the nucleon, probing strange quark nucleon form factors
gives insight into the non-perturbative contributions of the sea quarks to nucleon structure. There
is a vigorous experimental program designed to measure the strange quark electric and magnetic
form factors,Gs

E(Q
2) andGs

M(Q2). The strange axial form factor,Gs
A(Q

2) allows one to access the
contribution of the strange quark to nucleon spin. Also of interest is the strange scalar form factor,
Gs

S(Q
2). At zero momentum, this form factor gives the fraction of thenucleon mass contributed by

the strange sea quarks.

fTs =
msGs

S(Q
2 = 0)

mN
=

ms〈N|ss|N〉

mN
. (1.1)

Unfortunately, the strange scalar form factor is very difficult to measure experimentally, so Lattice
QCD is a vital theoretical tool in understanding this aspectof nucleon structure. In addition, the
scalar form factor is also of particular interest as it may make a significant contribution to the
scattering cross sections of dark matter particles with nuclei. In many models of dark matter, the
leading contribution to this cross section is via Higgs exchange, where the coupling to the nuclei is
directly proportional to the sum of the scalar quark form factors [1]. Since the Yukawa couplings
of the Higgs to the light quarks is quite small, while the contribution of the heavier sea quarks in
the nucleon is quite suppressed, the strange quark form factor may give the dominant contribution
to this process. As there are many current experiments underway that are attempting to detect dark
matter via their interaction with nuclei, the need to understand the strange scalar form factor is
made more vital [2].

Recently, there has been great interest in the lattice community in calculating this quantity
[3, 4, 5, 6, 7, 8, 9, 10]. The two most popular methods for calculating this quantity are via the
Feynman-Hellman theorem, and via direct computation of thedisconnected matrix elements. Here,
we present some preliminary results on our calculation of the strange scalar form factor with a 2+1
flavor anisotropic Wilson clover lattice action using direct computation of the disconnected scalar
three-point function in the nucleon.

2. Method

The disconnected, scalar three-point function is obtainedby correlating the vacuum-subtracted
scalar current,

jS(~x
′, t ′) = ss(~x′, t ′)−

〈

ss(~x′, t ′)
〉

, (2.1)

with the standard, zero-momentum nucleon two-point function,

G(2)(t f , ti ;~q) = (1+ γ4)
αβ ∑

~x

ei~q·~x
〈

Nβ (~x, t f )N
α
(~0, ti)

〉

, (2.2)

wheret f andti are the sink and source timeslices and~q is the momentum of the nucleon.
This leads to the following expression for the three-point function:

G(3)
S (t f , t

′, ti ;~q) = (1+ γ4)
αβ ∑

~x,~x′
ei~q·~x

〈

Nβ (~x, t f )| jS(~x
′, t ′)|N

α
(~0, ti)

〉

, (2.3)
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Figure 1: Schematic illustration of the evaluation of the disconnected three-point function.

t ′ is the timeslice for the current insertion, and now~q denotes the momentum injected at the inser-
tion. Figure 1 is a schematic illustration of the calculation of the disconnected three-point function.

The spectral decomposition of the two-point function is:

G(2)(t f , ti;~q) = ∑
n

2

(

1+
mn

En(~q)

)

Z2
n(~q)e

−En(~q)(t f −ti), (2.4)

where n indexes the different excited states andZn(~q) is the overlap of the creation operator with
the state.

Similarly, for the three-point function we have:

G(3)
S (t f , t

′, ti ;~q) = ∑
m,n

jnm(~q)e
−mn(t f −t ′)e−Em(~q)(t ′−t0), (2.5)

where the matrix elementsjnm(~q) can be expressed in terms of the various form factors. In par-
ticular, the ground state matrix element can be simply related to the strange scalar form factor,
GS

s(Q
2).

j11(~q) = 2

(

1+
m1

E1(~q)

)

Z1(~0)Z1(~q)G
s
S(Q

2) (2.6)

Thus, in the limit where the separations between the source,insertion, and sink all become large,
the excited state contributions are suppressed, so that thedesired form factor (at zero momentum)
is given just by the ratio of correlation functions:

Gs
S(Q

2 = 0) =
G(3)(t f , t ′, ti;~0)

G(2)(t f , ti ;~0)
. (2.7)

3. Simulation Details

We use two ensembles of anisotropic, clover-improved Wilson, stout-smeared lattices pro-
duced by the Hadron Spectrum Collaboration [11]. These lattices have a volume of 243 × 128
lattice sites, with spatial lattice spacingas = 0.12 fm, temporal lattice spacingat = 0.035 fm, and
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Figure 2: Effective masses from the nucleon two-point function. On the left, the effective mass for the
mπ = 220 MeV ensemble with 4 and 25 smearing steps on the source andsink. On the right, the effective
mass for themπ = 390 MeV ensemble with 4, 16, and 25 smearing steps.

anisotropyξ = as/at = 3.5. Both ensembles have strange quark massatms=−0.0743, but different
light quark masses,atml =−0.0860,−0.0840. This corresponds to pion masses ofmπ ≈ 220,390
MeV. The results that we show come from 580 configurations on the lighter pion mass ensemble
and 416 configurations on the heavier pion mass ensemble, with configurations separated by 20
molecular dynamics time units.

To construct the two-point and three-point functions, we require the light quark propagator
on these lattices. Because the three-point function requires the correlation between a disconnected
current on the insertion timeslice with the nucleon two-point correlator, we need a large number
of two-point correlators in order to extract a reasonable signal. On each configuration we place
sources on every 4 timeslices. We use Gaussian-smeared point sources, where the sourceψn(x)
after n smearing iterations is given by:

ψn(x) =
1

1+6r
ψn−1(x)+

r
1+6r ∑

µ=1,2,3

(

Uµ(x)ψn−1(x+µ)+U†
µ(x−µ)ψn−1(x−µ)

)

, (3.1)

with smearing coefficientr = 1.0. For the heavier mass ensemble, we employ sources withn =

4,16,25 smearing iterations, while for the lighter mass ensemblen = 4,25 smearing steps are
used, for a total of 96 light quark propagators per configuration for the former ensemble and 64
propagators per configuration for the latter. For each propagator, we use the same smearing at the
sink as we do at the source. In addition, we effectively double our statistics by calculating also
the backward-propagating correlator by replacing the(1+ γ4) projection in Eq. 2.2 with(1− γ4).
Thus, for the lighter mass ensemble, we measure a total of 416× 64= 26624 quark propagators
and 580×96= 55680 propagators for the heavier mass ensemble.

To compute the disconnected scalar current, we use diluted,stochastic U(1) sources to estimate
the disconnected current insertion. On each configuration,we use dilution blocks of 43×16, where
the source is only non-zero on one site in each dilution block. By diluting the source locations, the
gauge-variant noise coming from the off-diagonal matrix elements is reduced, suppressed by an
exponential fall-off with the pseudoscalar meson mass. Thus, our calculation of the disconnected
current insertion requires 12288 Dirac inversions per configuration, but gives a good estimate for
the disconnected all-to-all propagator.
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Figure 3: Ratio of the three-point function to the two-point function, G(3)(t f , t ′, ti ;~0)/G(2)(t f , ti ;~0) for the
insertion timeslice positioned halfway between the sourceand sink,t f − t ′ = t ′ − ti , as a function of this
separation. The lighter pion mass ensemble is on the left, and the heavier mass ensemble is on the right.

4. Results

Because we have done a large number of measurements for the two-point correlation functions,
we are able to make a fairly precise determination of the nucleon mass on these lattices. Figure 2
shows the nucleon effective mass for the two ensembles, for the different source and sink smearings
employed.

As can be seen, the smearing of the operators tends to improvethe overlap of the two-point
functions with the nucleon ground state, reducing the excited state contamination at the cost of
slightly increased statistical uncertainty. For the heavier mass ensemble single and double expo-
nential fits give a robust value for the nucleon mass ofatmN = 0.209(1). However, for the lighter
mass ensemble, the excited state contamination is more severe, so there is more systematic error in
the choice of fit range, giving a nucleon mass ofatmN = 0.18(1).

In order to determine the desired matrix element, we need to examine the ratio of the three-
point correlator to two-point correlator given in eqn. 2.7 in the limit where all the separations be-
tween the source, insertion, and sink timeslices become large. By using diluted stochastic sources,
as discussed in sec. 3, we have been able to calculate the three-point correlator with insertions at
every timeslice. Thus, we are able to examine the effect of placing the insertion at any place we
choose between the source and sink.

Figure 3 shows this ratio when we place the insertion midway between the source and the
sink. Considering the effective mass plots in fig. 2 it is perhaps not surprising that we do not see a
plateau in this ratio until the separation becomes∼ 20 timeslices. For both the lighter and heavier
mass ensembles this puts the signal for the ground state matrix element on the edge of the regime
where the statistical noise begins to wash out the signal. Ascan be seen, smearing of the nucleon
correlator does seem to reduce the excited-state contamination, but this effect is not particularly
significant.

Another interesting feature in fig. 3 is that the value for theratio at small separations approach
the plateau from below, in opposition to what is seen in the usual effective mass plot, where the
ground-state mass plateau is approached from above. This seems to indicate that the dominant
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Figure 4: Fit results for the bare disconnected scalar matrix element, GS as a function of the minimum
separation between the insertion timeslice and the source or sink location. The maximum separation included
for all fits is tmax= 30 timeslices.

excited-state matrix elements enter with opposite sign compared to the ground state. Since this
results in cancellation between the excited state and ground state at early times, it is difficult to
apply something like a multiple exponential fit to extract the desired matrix element.

However, it is encouraging that the statistical error uncertainties shown in fig. 3 are reasonably
small (40% for the heavier mass ensemble and 20% for the the lighter mass ensemble), yielding a
value forGs

S(Q
2 = 0) that is non-zero within statistical error. Figure 4 shows the fit results for the

bare strange scalar matrix element as a function the minimumseparationtmin between the source,
sink, and insertion included in the fit. In all cases, the maximum separation included istmax= 30.
One encouraging feature of fig. 4 is that the fitted result forGs

S(Q
2 = 0) do not seem to vary outside

of statistical error if one includes only sufficiently largeseparations.

Table 1 shows the fit results withtmin = 20 andtmax= 30. As can be seen from the tabulated
values, the different smearing also give results that are consistent within statistical error. The values
for the heavier and lighter mass ensemble also overlap, so itis difficult to see from this data the
light quark mass dependence of this quantity.

Gs
S(Q

2 = 0)
Smearing Steps atml =−0.0860 atml =−0.0840

4 4.4(1.8) 2.9(7)
16 - 2.7(6)
25 2.9(1.2) 2.6(6)

Table 1: Bare strange scalar matrix elementGs
S(Q

2 = 0) for the light and heavy ensemble as a function of
the source and sink smearing. All values extracted with fit rangetmin = 20 andtmax= 30.

5. Conclusions and Future Goals

If one takes the preliminary result of our calculation as〈N|s̄s|N〉 ≈ 3.0, combined withat(ms−

mcrit ) ≈ 0.013 andatmN ≈ 0.2 for the lattices we have used, one one obtains a value offTs ≈
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0.2, which is significantly larger than the results of other lattice calculation, which givefTs < 0.1
[3, 6, 7, 8]. The reason for this is that the above calculationuses the value of the bare scalar
matrix element. Because we use Wilson fermions, the explicit breaking of chiral symmetry results
in different renormalization factors for the singlet and non-singlet mass terms [7, 12]. Therefore,
in order to get results which can reliably be compared to other calculations, this renormalization
procedure must be carried out.

To do this, we intend to calculate the connected and disconnected scalar form factors for the
light quarks as well. By summing the light and strange contributions to the form factor on our
2+1 flavor lattices, we can obtain an RG-invariant quantity which encapsulates the coupling of the
Higgs boson to the three lightest quarks in the nucleon.

It is also clear from our data that there is significant excited state contamination in our results.
We will explore methods, such as using a variational basis with different source/sink smearings to
better extract the ground state contribution.
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