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1. Introduction

In the description of nucleon structure, transverse moomrdependent parton distribution
functions [1] (TMDs) play a role complementary to generdiparton distributions (GPDs), which
encode information about the transverse spatial distahutf partons. As detailed further below,
the definition of TMDs involves a number of subtleties not@ntered in the case of GPDs, which
also must be taken into account in formulating correspandtittice QCD calculational schemes.
Cast in a Lorentz frame in which the nucleon of masg propagates with a large momentum in
3-direction,P = (P° + P3) /v/2 > my, the quark momentum components scale such that TMDs
are principally functionsf (x,kr) of the quark longitudinal momentum fraction= k*/P* and
the quark transverse momentum veckgr with the dependence on the componknt= (k° —
k3)/v/2 < my becoming ignorable in this limit.f (x,kr) will thus be regarded as having been
integrated ovek™. TMDs also depend on various further parameters, specigémiibas needed.
This work focuses on casting the phenomenological defmitib TMDs into a form useful for
lattice QCD, and presenting exploratory results for sel@MD observables. This is facilitated
by writing the fundamental TMD correlator introduced belawterms of invariant amplitudes,
so that the problem can be transformed to a Lorentz frame ichumiotation to Euclidean lattice
time becomes simple. In particular, time-reversal odd d@oobservables such as the Sivers and
Boer-Mulders shifts will be discussed. A detailed accodrihs work was presented in [2].

2. Definition of TMD observables

The fundamental correlator defining TMDs is of the form

d?br ;d(b-P) . . 'l (bPS..)
] — P _ ) unsubtr,
ol l(x,kr,PS...) = /(271)2/(271)P+ exp(ix(b-P) —ibt -ky) cﬁt(bZ,...) . 2.1)
with N 1
Pinsupu(D:P.S ) = 3(P.S GO T Z[0,....b q(b) IS (2.2)

whereSdenotes the spin of the nucleon dndtands for an arbitrary-matrix structure. Heuristi-
cally, the Fourier-transformed bilocal quark bilinear cgger counts quarks of momentukrin the
nucleon state, with controlling the specific spinor components involved. Hogregauge invari-
ance additionally enforces the introduction of the gaugeection%, the precise path of which
is not specified at this point; its choice will be guided by piwysical process under consideration.
In turn, the presence & introduces divergences additional to the wave functioomelizations
of the quark operators (this is indicated by the subscripstbtr.”); these divergences accordingly
must be compensated by the additional “soft factef’ Here,.# does not need to be specified in
detail, since only appropriate ratios in which the soft dastcancel will ultimately be considered.
Finally, ®(x,kr,P,S,...) is, as noted further above, a function only of the three quasknentum
components contained mandkr, whereas the small componedt is integrated over; thus, in its
Fourier transform, the conjugate componbntis set to zero, as written in (2.1).

Decomposing the correlatap!"! (x,kr,P,S ...) into the relevant Lorentz structures yields the
TMDs as coefficient functions. The treatment below will fecan the two leading-twist TMDs
which are odd under time reversal, namely, the Sivers fondtj; and the Boer-Mulders function
hi. The former characterizes the unpolarized distributiorgeérks in a transversely polarized
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nucleon, whereas the latter characterizes the distributiotransversely polarized quarks in an
unpolarized nucleon. Nonvanishing effects in these cHameguire a mechanism which breaks
time-reversal invariance. The correlators relevant ferdéforementioned TMDs are

oV — g, [8”'“31 fL] 2.3)
my
odd
. 2dkik —K28))S), | Ak siky
olic™Y] — gh +( | — K74 JhL+_hL+[ ij th_] 24
Shy 2%, Tt | (2.4)

whereA denotes the nucleon helicity (i.&7 = AP /my, S™ = —Amy/2P™).

Up to this point, no reference has been made to a physica¢gsoghich may be parametrized
by the TMDs. However, the usefulness of a definition of TMDsadstingent upon such a con-
nection being possible. This requires a factorization fratork which allows one to separate the
description of the physical process into the hard, pertivbaertex, a TMD encoding the structure
of the nucleon, and further components such as fragmentatiations describing the hadroniza-
tion of the struck quark. In general, the possibility of atfaization of this kind is not guaran-
teed [3]. However, for certain processes, including semidsive deep inelastic scattering (SIDIS)
and the Drell-Yan (DY) process, factorization argumentgehiadeed been constructed, one pos-
sible approach having been advanced, e.g., in [4-6]. Figh&matically exhibits the principal
elements involved in a description of SIDIS. One partidylaoteworthy aspect is the final-state
gluon exchanges between the struck quark and the nuclearargnil hese final state effects break
time-reversal invariance and thus lead to nontrivial T-dfitDs. At a formal level, a resummation
of these gluon exchanges in the spirit of an eikonal appration yields a Wilson line approxi-
mately following the trajectory of the struck quark, closstte light cone. This motivates a specific
choice for the gauge connection between the quark opeiiat(22). Namely, parallel Wilson lines
are attached to both of the quark operators, extending ¢ ldistances along a directiarclose
to the light cone; at the far end, these lines are connectea Wjison line in theb direction to
maintain gauge invariance. The result is a staple-shapedection? [0, nv,nv+ b, b], where the
path links the positions in the argument%f with straight line segments, angdparametrizes the
length of the staple. Formally, thus, it is
the introduction of the additional vecter
which breaks the symmetry under time re-
versal and makes nonvanishing Sivers and
Boer-Mulders effects possible.

At first sight, the most convenient
choice for the staple directionwould seem
to be a light-like vector. However, beyond
%E[ % tree level, this introduces rapidity diver-

nucleon gences which require regularization. One
advantageous way to accomplish this is
to take v slightly off the light cone into
Figure 1: lllustration of the elements of SIDIS factor-  the space-like region [4, 5], with perturba-
ization. The lower shaded bubble represents the struc- tive evolution equations governing the ap-
ture parametrized by TMDs. proach to the light cone [6]. Within this
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scheme, a “modified universality” has been established coenmon TMDs describing both SIDIS
and DY, except that in the DY process, it is initial state fiatgions which play a crucial role;
accordingly, the staple directionis inverted and the T-odd TMDs acquire a minus sign. A scheme
in which v (along with the quark operator separationis generically space-like is also attractive
as a starting point for the development of the lattice QCBwdation, as will be discussed further
below. A useful parameter characterizing how clesis to the light cone is the Collins-Soper
evolution parametef = v- P/(|v||P]), in terms of which the light cone is approached for- oo.

The correlator (2.2) can be decomposed in terms of invaeiamlitudesATiB. Listing only the
components relevant for the Sivers and Boer-Mulders shifts

1 v Aon i A
Sp+  unsubtr. = Ax+ Inﬁll\|5iibiSj'A‘lZB (2.5)
1 Ziioy)

P (Dunsubtr imy &ij b; A4|3 — SAgB — |mN/\b.A10|3 + My [(b P)/\ mN(bT S]')]b|A11|3 (26)

These amplitudes are useful in that they can be evaluatedyidesired Lorentz frame, including
one particularly suited for the lattice calculation. On dtker hand, in view of (2.3) and (2.4), they
are clearly closely related to Fourier-transformed TMDgrf&rming the corresponding algebra,
and quoting only the components necessary for defining trer$sand Boer-Mulders shifts below,

O, ¢,....nv-P) = 2Roa(~bF,b-P=0,{,nv-P) /S (K2, .. (2.7)
fr (03,4, nv-P) = —2Aum(~bF.b-P=0,{,nv-P)/F(P,...)  (28)
“1 ((03,4,...,nV-P) = 2Ag(—bF,b-P=0,{,nv-P)/.F(K,...) (2.9)
where the generic Fourier-transformed TMD is defined as
FHO (2, ) — (-im)n/l dx/dszeibT'kT FxK2,...) . (2.10)
%) |

The br — 0 limit formally yields kr-moments of TMDs. However, this limit contains additional
singularities, which one can view as being regulated by &firi. Here, results will only be given
at finite by. Note the presence of the soft factasé on the right-hand sides of (2.7)-(2.9). One
can construct observables in which the soft factors cancebbmalizing the (Fourier-transformed)
Sivers and Boer-Mulders functions (2.8) and (2.9) by theolemized TMD (2.7), which essentially
counts the number of valence quarks. Thus, one defines tineralezed Sivers shift”
FLA(D) 2 A 207
Kru(®,. ) =my i (O Aus(BE.0.4.1v:P) 2.1
om0 Aos(—bt,0,{,nv-P)

which is the regularized, finitey generalization of the “Sivers shift”

fr0,...) _ Jdx/ d%ke k@Y kr, St = (1,0)
f][_l](o)(o, .. ) def d?kr (D[W](Xv kr,Sr = (17 O)) ’

mN (212)
which, in view of the right-hand side, formally represertte faverage transverse momentum of
unpolarized (U”) quarks orthogonal to the transversd () spin of the nucleon, normalized to the
corresponding number of valence quarks. In the interpogtadf (2.12), it should be noted that the
numerator sums over the contributions from quarks and aatic, whereas the denominator con-
tains the difference between quark and antiquark contabat thus giving the number of valence
quarks. Note furthermore that ratios of the type (2.11) alsicell -independent multiplicative
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wave function renormalization constants attached to tteglgaperators in (2.2) at finite physical

separatiorb. Similar to (2.11), one can also define the generalized Bbdders shift

N&B(_b%UO?Z?nV' P)
AZB(_b%WO)Z?r’V' P)

(k)uT(b%,...) =m (2.13)

3. Lattice evaluation and results

The formal framework laid out above provides all the necgsstéements for a lattice QCD
evaluation of generalized shifts such as (2.11) and (2.13)e path towards these observables
proceeds via the calculation of nucleon matrix elemente@type (2.2) and subsequent decompo-
sition into invariant amplitudes, as given in (2.5) and J2&his requires a framework in which the
four-vectorsb andv are generically space-like: The standard scheme for dhtpimucleon matrix
elements such as (2.2) operates with (ratios of) Euclidpanestime correlators, in which evolu-
tion in Euclidean time serves to suppress nucleon excitddsbetween, on the one hand, nucleon
source and sink and, on the other hand, the operator insartedintermediate Euclidean time. In
this setting, only matrix elements of operators which arndel at a single Minkowski time are
straightforward to evaluate; finite Minkowski time sep&mas in the operator cannot be directly
accomodated on the Euclidean lattice. Only if all parts efrimatrix element under consideration
can be evolved in time to a single instant does rotation batweuclidean and Minkowski space
become trivial. Consequently, lattice evaluation of theriralement (2.2) requires generically
space-likeb andv, since only then is there no obstacle to boosting the proltealLorentz frame
in which b andv are purely spatial, and calculatiﬁg{]rrlsubtr.in that frame. The results extracted for
the invariant amplitude&g are then immediately valid also in the original frame in wh{@.2)
was initially defined, thus completing the determinatiorjoéntities of the type (2.11) and (2.13).

Since, in a numerical lattice calculation, the staple extemecessarily remains finite, two
extrapolations must be performed from the generated datagly, the one to infinite staple length,
n — oo, and the extrapolation of the staple direction towards ititet Icone,f — o0, As shown be-
low, the former extrapolation is under control for a rang@afameters used in this work, whereas
the latter extrapolation presents a formidable challefigee main limitation in this respect is the
set of nucleon momenfaccessible with sufficient statistical accuracy. In théofeing, only data
for the isovectoru — d quark combination will be shown, since in this channel, dmgs of the
operator insertion to disconnected quark loops in the muckancel. Such disconnected contri-
butions have not been evaluated. Calculations were peerom three MILC 2+1-flavor gauge
ensembles [7] with a lattice spacinga@f 0.12fm, corresponding to pion masseg = 369 MeV
andm,; = 518 MeV, with two lattice sizes used in the former case’® 264 and 28 x 64. For
m,; = 518 MeV, the lattice size is 30< 64. The heavier pion mass ensemble, fraught with less
statistical uncertainty, provides the Iargésvalue, namerZ =0.78.

Figs. 2 and 3 show representative results for the genedatireers and Boer-Mulders shifts
(2.11) and (2.13). Fig. 2 (left) displays the dependencé®fSivers shift on the staple extent for a
given quark separatiobr and a given staple direction characterizedfbyThe T-odd behavior of
this observable is evident, witlp — oo corresponding to the SIDIS limit, wheregs— —o yields
the DY limit. The data level off to approach clearly identifie, stable plateaux as the staple length
grows. The limiting SIDIS and DY values, represented by tperosymbols, are extracted by
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Figure 2: Dependence of the generalized Sivers shift on the stapdmeieft) and on the quark separation
br in then — o SIDIS limit (right); from [2].
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Figure 3: Results for Sivers and Boer-Mulders shifts as a functioﬁ tr all ensembles; from [2].

imposing antisymmetry im, allowing one to appropriately average the— +o plateau values.
Fig. 2 (right) summarizes the results for the Sivers shiftia SIDIS limit for differentbr at a
given Z where the shaded area bel@lwy | ~ 0.25fm indicates the region where the results may be
significantly affected by finite lattice cutoff effects.

Fig. 3 summarizes the dependence of the Sivers and Boerevdudthifts on the Collins-Soper
evolution parametef, for all three ensembles considered. The quark separdtidrns kept fixed.
In the left-hand panel, the full Sivers shift data are repnésd by the filled symbols; the empty
symbols correspond to a certain partial contribution whigt not be discussed further here; for
detalls cf. [2]. The signal for the shifts quickly deteates as the nucleon momentlmnand thus
Z is increased. No clear trend can be identified at the prdseal of accuracy as’ rises, and
connecting with perturbative evolution equations at IaTngI clearly represent the most difficult
challenge for the present approach. Within the (sizeabiegdainties, no significant variation can
be discerned as one changes the pion mass or the spatial ekt lattice. In the isovector
flavor channel displayed, the signal for the Sivers shiftfiigher quality than the one for the
Boer-Mulders shift. One reason for this is that, if one safes theu- andd-quark contributions,
the Sivers shifts in the two cases are of opposite sign (teugarcing each other in the—d
difference), whereas the Boer-Mulders shifts are of theesaign, thus canceling each other to
some extent. It should be remarked that the lattice reshtesmed in this work are compatible with
phenomenological analyses of experimental SIDIS datd,[#) $pite of the variety of systematic
effects which would still need to be taken into account foullyfquantitative comparison.



Transverse momentum-dependent parton distribution ifmmefrom lattice QCD M. Engelhardt

4. Summary and outlook

This exploratory study of TMDs within lattice QCD, employgistaple-shaped gauge connec-
tions to incorporate final/initial state effects (for SIDLY), has provided first results for T-odd
Sivers and Boer-Mulders observables. Both of the corredipgnTMDs are sizeable and negative
in the isovectoru — d quark case. To cancel soft factors and multiplicative revaization con-
stants, appropriate ratios of Fourier-transformed TMg(eralized shifts”, cf. (2.11) and (2.13))
were constructed. The staple directiowas taken to be generically space-like, with the light-cone
limit to be approached by extrapolation in the CoIIins-S’qmrameterZ . This extrapolation has
to be performed in addition to the one to infinite staple etstgn While the latter extrapolation is
under control for a range of parameters considered in thi&vibe Iimitf — oo Clearly presents a
formidable challenge for the approach presented here. ihishin mind, the Boer-Mulders func-
tion of the pion is presently being investigated. Both thedomass of the pion compared with the
one of the nucleon (note that the hadron mass enters the dmtomoff), as well as the reduced
statistical fluctuations of pion correlators, permittifng ttreatment of higher hadron momenta, are
expected to aid in accessing lattice data at higfner
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