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We present the first four-flavour lattice calculation of the leading-order hadronic vacuum-
polarisation contribution to the anomalous magnetic moment of the muon, ahvp

µ , and the hadronic
running of the QED coupling constant, ∆α
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2). In the heavy sector a mixed-action setup is
employed. The bare quark masses are determined from matching the K- and D-meson masses to
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The 30th International Symposium on Lattice Field Theory
June 24 - 29, 2012
Cairns, Australia

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:xufeng@post.kek.jp
mailto:grit.hotzel@physik.hu-berlin.de
mailto:karl.jansen@desy.de
mailto:m.petschlies@cyi.ac.cy
mailto:dru@jlab.org


P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
2
)
1
7
4

ahvp
µ and ∆α

hvp
QED from N f = 2+1+1 twisted mass fermions Grit Hotzel

1. Introduction

The anomalous magnetic moment of the muon, aµ , serves as a benchmark test of the standard
model (SM). It has been measured very accurately [1, 2] and can be computed precisely within
the SM. A comparison between the experimental result for aµ and the SM prediction reveals a
discrepancy of more than three standard deviations which has persisted for many years now and
has been confirmed by computations of a number of groups, see, for example, the review [3]. The
question is whether this discrepancy originates from some effect missing in the experimental or
theoretical determination of aµ or whether it points to physics beyond the SM.

A key ingredient in the calculation of aµ is the leading-order hadronic vacuum-polarisation
contribution, ahvp

µ , which presently is the largest source of uncertainty in the theoretical compu-
tation of aµ , since the QED and electroweak contributions have been computed very accurately
employing perturbation theory, see [4, 3] and references therein. As ahvp

µ is intrinsically nonpertur-
bative, a lattice QCD computation of this observable is highly desirable. The currently accepted
SM values for this quantity are obtained mainly from the investigation of e+e− scattering and τ

decay data. In a recent study [5, 6], using two flavours of mass-degenerate quarks, a modified
method to compute ahvp

µ has been introduced resulting in a determination of ahvp
µ,light with a precision

of a few percent.

Besides ahvp
µ , the leading-order QCD contribution to the running of the QED coupling constant,

∆α
hvp
QED, also requires the hadronic vacuum-polarisation function and can likewise be investigated

once this function is known. As an important input parameter to SM calculations, the QED coupling
constant needs to be known very precisely in order to facilitate high precision tests of the SM at
any future linear collider [7].

Below we report preliminary results of the first lattice calculation of ahvp
µ and ∆α

hvp
QED with four

quark flavours. The contributions of the top and bottom quarks are negligible at the current level of
accuracy. So having four flavours allows for an unambiguous comparison to the dispersive analysis
of ahvp

µ and direct use in forming the SM prediction for aµ itself. The inclusion of the charm quark
is essential because its contribution is of the order of ahvp,charm

µ & 100×10−11 [9], which is larger
than the currently quoted uncertainty of the difference between the experimental and the SM results.
Furthermore, the order of magnitude of the charm quark contribution to ahvp

µ is the same as that of
the hadronic light-by-light contribution [10]. Thus lattice calculations with a dynamical charm
quark are necessary for computing ahvp

µ with a precision that matches the experimental accuracy.

The computation of ahvp
µ and ∆α

hvp
QED follows closely the strategy of refs. [5, 6] using improved

lattice definitions of these quantities. We demonstrate in this work that this new method continues
to work well even for the four-flavour case and again results in a mild quark mass dependence
leading to an accurate determination of ahvp

µ and ∆α
hvp
QED.

Our calculations are based on the configurations with four dynamical quark flavours generated
by the European Twisted Mass Collaboration (ETMC) [11, 12]. These sets of configurations are
obtained at different values of the lattice spacing and several lattice volumes, thus enabling us to
estimate discretisation and finite size effects as systematic uncertainties of our lattice calculation.
In addition, at each value of the lattice spacing, configurations exist at several values of the pion
mass, ranging from 230MeV . mπ . 450MeV.
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2. The lattice calculation

The leading-order hadronic contribution to the muon’s anomalous magnetic moment, ahvp
µ , can

be computed directly in Euclidean space-time [13]

ahvp
µ = α

2
∫

∞

0

dQ2

Q2 w

(
Q2

m2
µ

)
ΠR(Q2) . (2.1)

The renormalised vacuum-polarisation function is given by ΠR(Q2) = Π(Q2)−Π(0). Π(Q2) can
be obtained from the hadronic vacuum-polarisation tensor knowing its Lorentz structure

Πµν(Q) =
∫

d4xeiQ·(x−y)〈Jem
µ (x)Jem

ν (y)〉= (QµQν −Q2
δµν)Π(Q2) , (2.2)

where
Jem

µ (x) =
2
3

u(x)γµu(x)− 1
3

d(x)γµd(x)+
2
3

c(x)γµc(x)− 1
3

s(x)γµs(x) (2.3)

is the electromagnetic vector current.
On the lattice we use the conserved (point-split) vector current

JC
µ (x) =

1
2
(
χ(x+ µ̂)(1+ γµ)U†

µ(x)Qelχ(x)

− χ(x)(1− γµ)Uµ(x)Qelχ(x+ µ̂)
)
. (2.4)

χ(x) denotes a fermion doublet, either the light or the heavy one, in the so-called twisted basis
and Qel = diag(2

3 ,−
1
3) denotes the electric charge matrix. Resorting to Osterwalder-Seiler valence

quarks [14, 15] in the heavy sector admits a straightforward construction of the conserved currents
also for the strange and the charm quark. This is beneficial since in this way we can rely on the
vector Ward-Takahashi identity for all contributions and also avoid renormalisation.

In order to have a smooth function to perform the integral in eq. (2.1), the vacuum-polarisation
data obtained at discrete lattice momenta is fit for each flavour to the following functional form

Π(Q2) = g2
V

m2
V

Q2 +m2
V
+b0 +b1Q2 . (2.5)

The first term is the contribution of a narrow-width vector meson with mass mV and electromagnetic
coupling gV, which are determined directly in our calculation. The remaining terms parametrise
any deviations from this form. The results reported below are obtained using uncorrelated fits to
determine gV and mV from the zero-momentum current correlators. In these proceedings we do not
perform alternative fits such as the Padé approximants suggested in [17]. We also do not provide
an estimate of systematic effects by allowing additional terms in eq. (2.5). These aspects will be
addressed in a forthcoming publication.

Once ΠR(Q2) is known, it is straightforward to compute the leading-order hadronic contribu-
tion [7]

∆α
hvp
QED(Q

2) = 4πα0ΠR
(
Q2) (2.6)

which influences the running of the fine structure constant according to [16]

αQED(Q2) =
α0

1−∆αQED(Q2)
. (2.7)
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Here, α0 is the value at Q2 = 0, α0 ≈ 1
137 .

For the lattice calculation of ahvp
µ discussed here, we use the modified definition from [5]

ahvp
µ

= α
2
0

∫
∞

0

dQ2

Q2 w

(
Q2

H2

H2
phys

m2
µ

)
ΠR(Q2) , (2.8)

which goes to ahvp
µ for the light pseudoscalar mass mPS assuming its physical value, i.e. mπ , since in

this case also H→ Hphys, with the choice of the hadronic scale, H, discussed below. Analogously,
we determine ∆α

hvp
QED(Q

2) from [6]

∆α
hvp
QED(Q

2) = 4πα0ΠR

(
Q2 H2

H2
phys

)
. (2.9)

There are several possible choices for H. Below we give results for H =Hphys≡ 1 (the standard
choice) and H = mV(mPS), Hphys = mρ (improved choice). Here mV(mPS) is the light vector meson
mass as measured on the lattice at unphysical pseudoscalar masses mPS whereas mρ is the physical
value of the ρ-meson mass. See refs. [5, 6] for a more detailed discussion.
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a = 0.078 fm, L = 3.7 fm
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Figure 1: We show the light quark contribution to ahvp
µ as a function of the squared light pseudoscalar

mass from our N f = 2+1+1 computations. The lower set of data points corresponds to using the standard
definition, H = Hphys = 1 in eq. (2.8). The upper data points are obtained using the improved method, setting
H = mV(mPS) and Hphys = mρ . The open square represents the two-flavour result of refs. [5, 6]. The dark
grey error band corresponds to the quadratic fit (solid green line) and the light grey one belongs to the linear
fit (dashed black line).

The light quark contribution to ahvp
µ is depicted in fig. 1. In contrast to the standard choice the

improved lattice definition of ahvp
µ shows a weaker pion mass dependence. Comparing the previous

calculation with only two dynamical flavours of light, mass-degenerate quarks [5] to the one having
four flavours in the sea quark sector, the results for ahvp

µ,light extrapolated to the physical point are
found to be in full agreement for both setups. This demonstrates that the effects of a dynamical
strange and charm quark on the light quark contribution to ahvp

µ are small, as expected.
In fig. 2 we show the effect of adding the strange quark contribution and compare to the pub-

lished results of other groups, [18, 19]. The figure demonstrates that when using the standard
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definition of ahvp
µ on the lattice, all groups agree reasonably well. However, when using the im-

proved definition, the pion mass dependence of ahvp
µ is much flatter allowing for a better control of

the extrapolation to the physical pion mass.
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Figure 2: We compare the results for ahvp
µ having the light up and down quarks as well as the strange quark

in the valence sector for different collaborations. Only the upper set of data points for twisted mass fermions
are obtained from the modified definition, H = mV(mPS) and Hphys = mρ in eq. (2.8). Data are from [19]
(clover-improved) and [18] (domain wall). The open square represents the standard model value obtained
from the dispersive analysis of ref. [8]. Concerning the error bands of the fits, the same comments as in fig. 1
apply.

Finally, we show in fig. 3 the full four-flavour contribution to ahvp
µ . Comparing with fig. 2,

we see that including the charm quark indeed leads to a contribution of the expected order of
magnitude. We perform both a linear and a quadratic extrapolation to the physical point. Within
just the statistical errors, we find reasonable agreement with the dispersive result [8], as shown
in fig. 3. At the current precision, we do not observe any statistically significant finite-size or
lattice discretisation effects, however, the impact of disconnected contributions or unitary-violating
effects due to the mixed-action setup in the heavy sector have not been examined yet. Furthermore,
the effect from the ρ-meson not being able to decay to two pions for all but one ensemble has
to be investigated. The details of the final extrapolation to the physical point and the associated
systematic uncertainties will be presented elsewhere.

Fig. 4 shows our results for ∆α
hvp
QED at a typical hadronic scale of Q2 = 1GeV2 obtained from

the same ensembles used to determine ahvp
µ . Similar to ahvp

µ , we find reasonable agreement with the
dispersive result [7] to within the statistical uncertainties. A full determination of the systematic
uncertainty for the extrapolated value will also be presented in a later publication.

3. Conclusion

We have pointed out that the charm quark contribution is necessary for achieving a lattice
computation of ahvp

µ with a precision that is comparable to the experimental one. Furthermore,
we have shown that also in the case of a four-flavour calculation of the leading-order hadronic
contribution to the muon anomalous magnetic moment and to the running of the electromagnetic
coupling constant, the improved method of ref. [5, 6] continues to work well. We have so far not
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Figure 3: Full four-flavour contribution to ahvp
µ as a function of the squared light pseudoscalar mass from

our N f = 2+1+1 computations. Concerning the upper and lower data sets and the error bands of the fits,
the same comments as in fig. 1 apply. The open square represents the standard model value obtained from
the dispersive analysis of ref. [8]. Note that in this case of four flavours there is no ambiguity in determining
the contribution to ahvp

µ from the dispersive analysis.
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Figure 4: Full four-flavour contribution to ∆α
hvp
QED(1GeV2) as a function of the squared light pseudoscalar

mass from our N f = 2+ 1+ 1 computations. The lower set of data points corresponds to the use of the
standard definition, H = Hphys = 1 in eq. (2.9). The upper data points are obtained using the improved
method, setting H = mV(mPS) and Hphys = mρ . Concerning the error bands of the fits, the same comments
as in fig. 1 apply. The open square represents the standard model value obtained from the dispersive analysis
of ref. [7]. Note that in this case of four flavours there is no ambiguity in determining the contribution to
∆α

hvp
QED(1GeV2) from the dispersive analysis.

performed a comprehensive analysis of the systematic uncertainties. In particular, the disconnected
contributions originating from the strange quark might be non-negligible. Additionally, it might
be necessary to take isospin breaking effects into account as the precision of our computation
improves.

We conclude by emphasising that the strategy followed here can also be applied to other ob-
servables such as the Adler function, the corrections to the energy levels of muonic and ordinary
hydrogen, and the weak mixing angle, as discussed in [6].
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