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The leading hadronic contribution to the muon anomalousnatg moment is given by a
weighted euclidean momentum integral of the hadronic vacpolarization. This integral is
dominated by momenta of order the muon mass. Since in [a@&B it is difficult to compute
the vacuum polarization at a large number of low momenta,rarpetrization of the vacuum
polarization is required to extrapolate the data. Mostditdate are based on vector meson domi-
nance, which introduces model dependence into the laticgatation of the magnetic moment.
Here we introduce a model-independent extrapolation nietred present a few first tests of this
new method.
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Figure 1: Left panel: the weighf (Q?) for the muon; right panel: typical data f6t(Q?) from the lattice.
Horizontal axis:Q? in Ge\2.

1. Introduction

The anomalous magnetic moment of the mgoen2 has been measured with great accuracy
[1], and will be measured with even greater accuracy in ther figture. Therefore, a reliable
computation ofa, = g— 2 from theory with a comparable error would provide a precidiest of
the Standard Model that is sensitive to a large class of rsarfalew physics beyond the Standard
Model. For this reason there has recently been a lot of isténdattice computations af;, with
controlled errors [2, 3, 4, 5]; for an overview, and more refiees, we refer to Ref. [6]. Here, we
report on recent work on the leading hadronic contributma,, which comes from the hadronic
vacuum polarization [7].

The contribution tay, from the lowest-order hadronic vacuum polarization can bidem as
an integral over the subtracted vacuum polarizafiti®?) — 1(0) as a function of euclidea®?
8, 9],

aﬂozmﬁéwmfuqaaum—n«fn, (1.1)

where f(Q?) is a kinematic weight shown in Fig. 1, left panel. The righh@ashows a typical
example of lattice data fdfl(Q?) (these are the data from a%#4 144 lattice with lattice spacing
0.06 fm andm;; = 220 MeV discussed below).

Clearly, one needs to fit these data in order to compute tlegrat In most lattice computa-
tions ofal}"© to date this has been done with various variants of vect@emelominance (VMD}.
This introduces model dependence into the computationtrendim of the work presented here is
to remove this model dependence.

2. Multi-point Padé approximants

We start from the observation that we can write a subtradsedsion relation fof1(Q?):

“00 t)
M(0) — N(Q? 2:/ at PY_ o2, 21
(NO-N@) /& = |, dtii o = Q) (2.1)
IRef. [5] used Padé approximants, but, as we will see below,different type than those supported by a conver-
gence theorem.
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in which p(t) = ImT(t)/m is the spectral function. Because the spectral functitn > 0, the
integral in Eq. (2.1) is a Stieltjes function, analytic emehere except along the c(t-co, —4m?].
For such a function, there exists a theorem, proven in R&@s.1[1]:

Theorem: Given P points (Q?,®(Q?)), i € {1,...,P}, a sequence of Padé approximants (PAs)
can be constructed which convergedi¢Q?) on any closed, bounded region of the complex plane
excluding the cut, in the limiP — .

This sequence of PAs can be constructed fronPtpeints through a continued fraction:

P(Q?) 2.2

PPN oo (o]
+
" (Q@-QR_Wp_1(QB)

1+(Q2-QB)Wp(@®)
with W; related to®(Q%_; ;) (Wo = ®(Qf), etc). Equation (2.2) yields &[(P—1)/2],[P/2]]
PA (where[x] is the integer part ok). Furthermore, one can prove that this can be rewritten as
[10, 11, 12]

Q%) =

) ) P2 g,
MnQ°) =n(0) —Q° | ap+ , 2.3
Q%) =n() PR (@3)
with
a,>0, b[p/2]>...>b1>4m,21, (2.4)

i.e., all poles are single poles, they are located on the cut, lhresalues are positive. The constant
ap = 0 for P even.

In the situation of an actual fit to data fAi( Q?) obtained from a numerical computation, these
data are only known within some statistical errors. Thatliespthat we do not know any points
of the function exactly, and a multi-point sequence of PAsgdied by the theorem cannot be
constructed. Our strategy will be to fit a fixed number of datm{s on a given interval, using
the fact that sinc€l(Q?), according to the theorem, can be described by a convergingesice of
PAs of the form (2.3), this equation provides a valid funeéibform to which to fit the data. More
concretely, we will fit the form (2.3) foP € {2,3,4,5}; this yields[0, 1], [1,1], [1,2] and[2,2] PAs.

In order to compare diffferent fits, we will then compute

2 Ge\?
a0t~ aa? | Y agn (@) (o) - N(@) (2:5)

We note that VMD is the same ag@1] PA, but keepindy; = mf, fixed: This isnota valid PA in
the sense of the theorem, because the theorem does not shingmbout the possible values of
the parameters in addition to the conditions (2.4).

3. Tests

For our first test, we explore fits to a MILC data set on & 2®6 lattice with lattice spacing
0.09 fm, and a pion mass?, ~ 480 MeV [13]. This is one of the data sets that was also used in
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correlated uncorrelated
interval 0< Q? < 0.6 Ge\2 || interval 0< Q% < 1 Ge\?

PA | #parameterd| x2/dof | 1010810t || x2/dof | 10M0al-OY=1
VMD 2 5.86/3 363(7) 437/18]  413(8)
0,1] 3 11.4/8 338(6) 358/17|  373(37)
1,1] 4 7.49/7 350(8) 3.36/16|  424(116)
1,2 5 7.49/6 350(8) 3.35/15|  443(293)
2,2) 6 7.49/5 350(7) 3.35/14|  445(432)

Table 1: Results for various fits. The fit markédvas done on an interval@ Q2 < 0.35 Ge\2.
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Figure 2: Correlated (solid curve) and uncorrelated (dashed cuoraéhg|[1, 1] PA fits (left panel), and for
the correlatedl, 1] (solid curve) and uncorrlated VMD (dashed curve) fits (righiel).

Ref. [2]. We show the results for thec {2,3,4,5} PAs and for VMD in Table 1. The uncorrelated
VMD fit is the same as the fit to these data performed in Refd@d the results agree.
Table 1 leads us to make the following observations:

e The correlated VMD fit is a bad fit as measuredyfyper degree of freedom (dof); adding
parameters the fits clearly improve. Note that we always sadtie fitting interval by looking
for a minimal value ofy?/dof.

e ltturns out that itis difficult to determine the parametefrthe second pole with any precision
2
[7] (as can be inferred from the values y#/dof), buta;; >"? <! is insensitive to the second
and higher poles.

e There is good internal consistency between all fits showiéntable, except between the
uncorrelated VMD fit and any of the correlated PA fits. Howetee VMD fits are model
dependent, which translates into an unknown systematic ierthese fits.

We display some of the fits of Table 1 in Fig. 2. Not surprisinghe uncorrelated fits look
better at smalQ?, but all fits shown in the figure do a good job of describing tatad Therefore,
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Figure 3: The integrand of Eq. (1.1), using the correlated] PA fit to the 64 x 144 data set (solid curve),
compared with the data weighted byQ?) in Eq. (1.1).

based on the data, it is not possible to decide which of thesks the best fit.

We repeated our explorative analysis on MILC lattices on%»6844 lattice with lattice spac-
ing 0.06 fm, andm;; ~ 220 MeV. We find very similar resultsjn particular we find

aﬂLQQZSl = 57241) x 10710, 1,1] correlated (3.1)
aELo,stl = 646(8) x 10710, VMD uncorrelated

Our conclusions are the same as before. We note that for ladéhsets the discrepancy between
the correlatedl,1] PA and the uncorrelated VMD fit is about 15%. From the pointiefwthat
both types of fit give a good description of the data, we taketthimply that there is a systematic
error of (at least) this size afflicting the determinatioralgf from the lattice.

The underlying problem is displayed in Fig. 3, where we seeftthere are essentially no data
in the region dominating the integral in Eq. (1.1). For thisge clearly needs data at more low
values ofQ?, with smaller errors. It would be interesting to see whethese improvements can
be attained by using twisted boundary conditions, somgtttiat has been tried in this context in
Ref. [5], and by an error reduction technique such as thatge®ed in Ref. [14].

We have also compared our PA fits with polynomial fits; resalésshown in Table 3. “Poly”
indicates a fit with a polynomial of degreeAll fits are correlated fits; and the pairs of fits “Poly 3,”
“[1,1]” respectively “Poly 4,” 1, 2]” have the same number of parameters. We observe that the fits
deteriorate in the polynomial case going from Poly 3 to Polyidh errors increasing, and central
values foraﬂLO’QzS1 fluctuating more, while this is not the case going from fthd| to the[1,2]

PA fit.

2 N . .
20f course, central values aﬂ"o"Q <Lare quite different, if only because of the smaller pion mass
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Poly 3 | Poly 4 | PA[1,1] | PA[1,2] |

# points| x?/dof aﬁ) x?/dof aﬁ) x?/dof aﬁ) x?/dof aﬁ)
16 | 9.6/12 | 543(35)| 9.5/11 | 483(244)| 9.7/12 | 564(55)| 9.7/11 | 565(41)
18 | 11.4/14| 526(33)| 10.5/13| 596(79) | 11.2/14| 541(46)| 11.5/13| 561(21)
20 | 13.1/16| 536(23)| 13.1/15| 535(45) | 13.9/16| 572(41)| 13.9/15| 572(37)
22 | 16.5/18| 541(23)| 15.9/17| 513(44) | 18.5/18| 566(37)| 18.5/17 | 566(33)
24 | 16.6/20| 537(18)| 16.4/19| 521(41) | 19.4/20| 583(34)| 19.4/19 | 583(33)
26 | 30.7/22| 505(16)| 23.6/21| 580(32) | 26.8/22| 557(31)| 26.7/21| 560(27)

Table 2: Comparison of polynomial with PA fits, abbreviatim&Lo’ngl by aﬁ,l). The number of data
points included in the fit is indicated in the first column,lw&0 points corresponding to the fitting interval
0 < Q? < 0.53 Ge\?. Data from the 63x 144 MILC lattices.

4. Conclusions

We presented a new method for parametrizing the momenturandepce of the hadronic
vacuum polarization, with the aim to avoid the model depandef the VMD-based fits that up to
this point have been used in most fits to lattice data for tledrac vacuum polarization. It turns
out that this is possible, because the vacuum polarizaaorbe represented in terms of a Stieltjes
function, for which sequences of Padé approximants can i&reated which converge uniformly
to the function on any bounded region in the complExplace excluding the cut.

We have tested this new idea on two examples of lattice dathdovacuum polarization. We
note that the fits based on Padé approximants can lead to &ajistical errors than some of the
VMD fits, as for instance in Eq. (3.1). However, it should beplasized that the latter are afflicted
with an unknown systematic error originating in the inhénemodel dependence of VMD-based
fits. The fits based on Padé approximants avoid this systeeratir>

The new method looks promising. However, it is clear thabdat the hadronic vacuum
polarization at more lov@? values (of order the square of the muon mass), and with sneatiers,
will be needed in order to reach a higher precisiond@‘ro. As we have seen, fits based on Padé
approximants and VMD-based fits (both correlated and uetaiad) give a good description of
the data, but lead to values faf-* < <! which differ by about 15%.

Finally, we observe thag— 2 is an example of a quantity which is quite sensitive to tHaeva
of the pion mass. Therefore, better data for the hadroniowacpolarization will also have to be
obtained at small values of the pion mass, certainly signifly smaller than 300 MeV.
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