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β a[fm] L/a L[fm] mπ [MeV] no. meas

5.2 0.079 32 2.5 312, 363, 1696, 796,
473, 603 1060, 576

5.3 0.063 32 2.0 451, 606, 649, 1344, 1296, 278,
48 3.0 277, 324 1000, 796

5.5 0.050 48 2.4 430, 536 600, 600

Table 1: Details of the lattice ensembles used in this study, showing β -values, lattice spacing a, lattice
extent L (where T = 2L), pion mass mπ and total number of measurements.

1. Introduction

Baryon form factors are central observables of hadronic physics and provide details of the
object’s distribution of charge and magnetisation. Currently, lattice simulations fall short of the
accuracy achieved by experiment. Furthermore, the simulations of the nucleon electromagnetic
form factor fail to reproduce experimental results [1, 2]. It is therefore important to ensure that sys-
tematic effects are under control in lattice simulations. To study one such effect, we employ three
separate methods (described in section 3) that account for excited state contributions with varying
degrees of rigour to check the control of systematic errors in the extraction of the form factors. This
work provides an update on results previously presented in [3] and follows the methodology used
in a recent study of the nucleon’s axial form factor [4]. Similar methods have been used in [5]. Our
simulations use non-perturbatively O(a) improved Wilson fermions in N f = 2 QCD, measured on
the CLS ensembles. Table 1 provides details of the lattice ensembles.

The matrix element of a nucleon interacting with an electromagnetic current V µ =ψ(x)γµψ(x)
may be decomposed into the Dirac and Pauli form factors F1 and F2:

〈N(p′,s′)|Vµ |N(p,s)〉= ū(p′,s′)
[

γµF1(Q2)+ i
σµνqν

2mN
F2(Q2)

]
u(p,s), (1.1)

where u(p,s) is a Dirac spinor with spin s, and momentum p, γµ is the Dirac matrix, and σµν =
1
2i [γµ ,γν ]. Also Q2 = −(Ep′ −Ep)

2 +~q2 where ~q = ~p′−~p. These form factors are related to the
Sachs form factors, GE and GM,

GE(Q2) = F1(Q2)− Q2

4m2
N

F2(Q2), GM(Q2) = F1(Q2)+F2(Q2), (1.2)

that are measured in scattering experiments via the differential cross section described by the
Rosenbluth formula. The form factors may be Taylor expanded in the momentum transfer Q2

GX(Q2) = GX(0)
(

1+
1
6
〈r2〉Q2 +O(Q4)

)
, (1.3)

from which the charge radii of the nucleon may be determined:

〈r2
X〉=

6
GX(Q2)

∂GX(Q2)

∂Q2

∣∣∣∣∣
Q=0

, (1.4)

where X = E, M. For the conserved current, GE(0) = 1 and GM(0) = µ , where µ measures the
magnetic moment in nuclear magneton units e/(2mN).
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2. Lattice formulation

The calculation of the form factors requires a ratio of correlation functions, for which we use
(for the case ~p′ = 0)

Rγµ
(~q, t, ts) =

C3,γµ
(~q, t, ts)

C2(~0, ts)

√
C2(~q, ts− t)C2(~0, t)C2(~0, ts)

C2(~0, ts− t)C2(~q, t)C2(~q, ts)
, (2.1)

C2(~p, t) = ∑
~x
〈Γα ′αJα(x)Jα ′(0)〉e−i~p.~x, (2.2)

C3,γµ
(~q, t, ts) = ∑

~x,~y
〈Γα ′αJα(~x, ts)Oγµ

(~y, t)Jα ′(0)〉e−i~q.~y. (2.3)

This ratio was found to be the most effective in [6]. C2(~p, t) and C3,γµ
(~q, t, ts) are two- and three-

point functions respectively. Jα(x) is a suitably chosen interpolating operator with the correct
quantum numbers to create a nucleon, and Γαα ′ is a projection matrix used to give the interpolating
fields the correct parity. We choose to polarise the nucleon in the z-direction, for which Γ =
1
2(1+ γ0)(1+ iγ5γ3). This choice allows us to extract both GE and GM, whereas for an unpolarised
nucleon, Γ = 1

2(1+ γ0), one may only determine GE . Further to this, for improved statistics we
average over polarisation in the positive and negative z-direction as well as over the nucleon and
anti-nucleon state.

Due to the insertion of the operator at time t, the three point function is a more computationally
demanding object. We use the ‘fixed sink method’ for its calculation, which fixes the final and
initial states, but allows both the operator and momentum transfer to be chosen without the need
for additional inversions [7]. For this study, we consider both the local and conserved vector current
for the operator Oµ . The latter is defined as

Ocon
µ (x) =

1
2
(
ψ(x+aµ̂)(1+ γµ)U†

µ(x)ψ(x)−ψ(x)(1− γµ)Uµ(x)ψ(x+aµ̂)
)

(2.4)

where ψ = u,d. In principle, we are able to determine the form factors for the proton, neutron, iso-
scalar and iso-vector depending on the linear combination of contributions from the quark correla-
tion functions. We concentrate on the iso-vector, which has the advantage that quark-disconnected
diagrams cancel.

To improve the overlap of the interpolating operators with the nucleon, we used Gaussian
smearing at both the source and sink supplemented by HYP smeared links. Whilst this is a great
improvement over point sources, the extraction of plateaus at non-zero momenta can still prove
difficult. A poster presented at this conference addresses this problem for two-point functions,
whereby using a generalisation of Gaussian smearing to form an anisotropic wavefunction results
in a reduction of the noise-to-signal ratio at non-zero momenta for the pion and nucleon [8, 9].
We are currently extending this study to include three-point correlation functions with the aim of
applying the technique to the extraction of the vector form factors.

GE and GM may be extracted from eq. (2.1) at large time arguments:

Rγ0(~q) =

√
M+E

2E
GE(Q2), Rγi(~q) = εi j p j

√
1

2E(E +M)
GM(Q2) i = 1,2. (2.5)
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Figure 1: Left panel: Plateau fits to GE for several ts for the smallest non-zero momentum transfer, Q2.
Excited state contamination effects for the smallest ts are clearly visible (the asymmetric distribution of
points is a remnant of the non-zero momentum transfer). Right panel: Summation method for GE . Both
panels are shown for our lightest ensemble (mπ = 277 MeV).

3. Systematics of extraction

Correlation functions must have reached their asymptotic behaviour for a reliable and unbiased
determination of the form factors. However, we observe exponentially decaying excited states
from both the source and sink. Therefore, simple plateau fits (left panel fig. 1) show a trend of
higher values for small source-sink separations, i.e. for decreasing ts. To control systematics, it is
important to take these excited states into account. Contributions to the ratio from the ground and
excited states may be factorised

R(~q, t, ts) = R0(~q, t, ts)
(

1+O
(
e−∆t)+O

(
e−∆′(ts−t))) (3.1)

where ∆ and ∆′ are the energy gaps of the initial and final nucleons respectively. With the assump-
tion ∆ = ∆′ = 2mπ

1 we take the excited states into account using a fit to

R(~q, t, ts) = GE,M +b1e−∆t +b2e−∆(ts−t)+b3e−∆ts . (3.2)

An alternative without the need for the assumption ∆ = ∆′ = 2mπ uses summed operator insertions
[10]:

S(ts) =
ts

∑
t=0

R(~q, t, ts)→ c(∆,∆′)+ ts
(

GE,M +O
(
e−∆ts

)
+O

(
e−∆′ts

))
. (3.3)

This allows the form factors to be extracted from the slope, from computing S(ts) for several ts
(right panel fig. 1). The excited states should be more suppressed for this method than for a fit to
eq. (3.2), because ts > t,(ts− t).

1This is not strictly true when there is a momentum transfer, however we find this to be a small effect as the data
is well described by eq. (3.2). Further to this, the results agree with the summation method, which does not require an
assumption for the energy gap.
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Figure 2: Results for our most chiral (mπ = 277 MeV) lattice. The top two panels show the Q2 dependence
for GE and GM . The bottom panel shows a determination of the magnetic moment, µ . This is shown for the
three extraction methods.

4. Form factor Q2 dependence and chiral behaviour

For the remaining discussion we concentrate on the conserved current as this removes the need
for any renormalisation of the lattice operators; however, we note that a comparison between the
local and conserved current provides a check of the renormalisation factor, which we find to be in
agreement with other work (e.g. [11]). In order to model the Q2 dependence of the form factors
(shown in fig. 2 for our most chiral analysed ensemble) a dipole ansatz is adopted

GE,M(Q2) =
GE,M(0)

(
1+ Q2

M2
E,M

)2 , (4.1)

from which the radii is extracted. We may also obtain the magnetic moment µ from GM(0) and
also from the ratio

µ = lim
Q2→0

GM(Q2)

GE(Q2)
, (4.2)

based upon the phenomenological observation that the form factors GE and GM have very similar
radii. For our determination, the two methods are in good agreement (fig. 2).

This calculation was performed on the ensembles listed in table 1 to check both finite volume
and discretisation effects. The lattice ensembles cover a range of pion masses (277 to 649 MeV).
In order to perform an extrapolation in the pion mass to the physical point, we model the chiral
behaviour of the radii using a HBχPT inspired fit [12],

〈r2
1〉= c1 + c2 log(m2

π). (4.3)
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We are currently investigating the effect of other fit forms on the result, including linear fits and
covariant BχPT fits as well as applying cuts to the pion mass range [13, 14, 15, 16], so as to have
a comprehensive picture of the systematic effects. We also apply this to 〈r2

2〉 and κ = µ−1.
Thus far we have sketched the methodology commonly employed to extract form factors on

the lattice. Using this, we study the systematics of the extraction by separately employing the
three analyses described above: a plateau fit (for the largest ts), a simultaneous excited state fit to
t and ts and the summation method. A comparison of the three methods in fig. 2 shows that whilst
all three methods agree within statistical errors, a systematic trend for better agreement between
the two methods that account for excited state effects is observed. This is echoed in all of our
ensembles. An earlier study by our group on gA [4] demonstrates a clearer systematic dependence.
However, we note that gA is a somewhat cleaner quantity to extract on the lattice (i.e. Q2 = 0).
The electromagnetic form factor analysis requires an improvement in the statistical errors and the
addition of smaller pion masses to further check the systematic behaviour and as such the results
in this proceeding should be considered as preliminary. Fig. 3 compares the determination of the
Dirac radius 〈r2

1〉 from an excited state fit with the plateau fit (the summation method agrees well
with the excited state fit but with increased statistical errors). We observe an increase in the central
value for all but one ensemble and also that the difference increases as the pion mass decreases (as
one would expect, excited states should contribute more for more chiral mπ ). This results in a larger
radius that is closer to the experimental result. If we restrict the fit to the four most chiral ensembles
and perform a straight line fit, a result compatible with experiment is achieved for the excited state
method for 〈r2

1〉. We have also looked at κ and 〈r2
2〉, for which we see a similar behaviour. These

are however all at the preliminary stage.

5. Conclusions and outlook

We have presented preliminary results for the nucleon vector form factors with a particular
emphasis on the potential for systematic errors from excited state contaminations. We account
for this through a comparison of three extraction techniques which account for excited states with
varying degrees of rigour. Whilst we are, so far, unable to see any effects outside of errors between
the three methods, we do see an improved agreement between the two methods that account for
excited state effects in both the Q2 behaviour and in the chiral extrapolations of the form factors,
and consider this to be an indication of a systematic effect. Furthermore, there is a trend for a
steeper gradient to be extracted from these results and thus such a systematic could lead to better
agreement between lattice results and experiment. The results indicate the importance of excited
states and that they should be a consideration in studies of potential systematic effects.

The large statistical errors for all methods highlight the need for greater statistics and for more
chiral points to be added, where excited states should, in principle, have a greater effect. Monte
Carlo ensembles exist for more chiral points (the lightest available is approximately 200 MeV), but
are yet to be analysed.
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π) using the largest ts plateau-fit (blue) and excited state fit (red) for the extraction. The horizontal

black line shows the experimental result. The different symbols indicate the lattice spacing (see legend) and
the leftmost two points show our extrapolated values.

[2] D. B. Renner, PoS LAT 2009 (2009) 018 [arXiv:1002.0925 [hep-lat]].

[3] S. Capitani, B. Knippschild, M. Della Morte and H. Wittig, PoS LATTICE 2010 (2010) 147
[arXiv:1011.1358 [hep-lat]].

[4] S. Capitani, M. Della Morte, G. von Hippel, B. Jäger, A. Jüttner, B. Knippschild, H. B. Meyer and
H. Wittig, Phys. Rev. D 86 (2012) 074502 [arXiv:1205.0180 [hep-lat]].

[5] J. R. Green, M. Engelhardt, et al.,arXiv:1209.1687 [hep-lat].

[6] C. Alexandrou et al., PoS LATTICE 2008 (2008) 139 [arXiv:0811.0724 [hep-lat]].

[7] G. Martinelli and C. T. Sachrajda, Nucl. Phys. B 316 (1989) 355.

[8] M. Della Morte, B. Jäger, T. Rae and H. Wittig, PoS LAT 2012 (2012) 260

[9] M. Della Morte, B. Jäger, T. Rae and H. Wittig, [arXiv:1208.0189 [hep-lat]].

[10] L. Maiani, G. Martinelli, M. L. Paciello and B. Taglienti, Nucl. Phys. B 293, 420 (1987).

[11] M. Della Morte, R. Hoffmann, et al.,JHEP 0507 (2005) 007 [hep-lat/0505026].

[12] A. A. Khan, M. Göckeler, et al.,Phys. Rev. D 74 (2006) 094508 [hep-lat/0603028].

[13] S. Collins, M. Göckeler, et al.,Phys. Rev. D 84 (2011) 074507 [arXiv:1106.3580 [hep-lat]].

[14] C. Alexandrou, M. Brinet, et al.,Phys. Rev. D 83 (2011) 094502 [arXiv:1102.2208 [hep-lat]].

[15] J. D. Bratt et al. [LHPC Collaboration], Phys. Rev. D 82 (2010) 094502 [arXiv:1001.3620 [hep-lat]].

[16] T. Yamazaki, Y. Aoki, et al.,Phys. Rev. D 79 (2009) 114505 [arXiv:0904.2039 [hep-lat]].

7


