
P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
2
)
1
8
1

The scalar pion form factor with Wilson fermions
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We calculate the scalar form factor of the Pion in N f = 2 QCD with O(a) improved Wilson
fermions including both the connected and the disconnected contributions, where the latter can be
estimated using stochastic sources. We will show that the statistical error of this estimation can
be reduced using a generalized hopping parameter expansion. To extract the scalar form factor
we build suitable ratios of three- and two-point functions. We report on our attempts to calculate
the scalar radius from the form factor.
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Figure 1: connected (left) and disconnected (right) contribution to the scalar form factor of the pion

1. Introduction

The scalar form factor of the pion describes the coupling of a charged pion to a scalar particle.
It is not yet possible to measure the scalar form factor directly in an experiment, but it can be
calculated using lattice QCD. The scalar form factor can be defined as

FS

(
Q2)≡ 〈π+ (p f )

∣∣ mddd +muuu
∣∣π+ (pi)

〉
, (1.1)

with the momentum transfer Q2 =−q2 =−(p f − pi)
2. From the scalar form factor the scalar radius

〈
r2〉

s =−
6

Fs(0)
∂Fs(Q2)

∂Q2

∣∣∣
Q2=0

. (1.2)

can be determined, in analogy with the charge radius in the vector case. Using chiral perturbation
theory (χPT) the scalar radius depends on only one low energy constant l4 at one loop level [1].
Additionally it is possible to relate the scalar radius to the ππ-scattering amplitude. In [2] a scalar
radius

〈
r2
〉

s = 0.61±0.04fm2 was obtained using ππ-scattering data.
When performing the Wick contractions for the matrix element in (1.1), two contributions are

obtained, a quark-connected and a quark-disconnected one. The latter is computationally more
demanding, because the calculation of the disconnected loop requires knowledge of the all-to-all
propagator which can be estimated using stochastic sources. In order to keep the required computer
time at a minimum, it is important to use a small number of stochastic sources. However, the fewer
sources used the larger is the error of the disconnected contribution. This error can be reduced
using a generalized hopping parameter expansion (cf section 2).

Our calculations are done with non-perturbatively O(a)-improved Wilson fermions and the
Wilson gauge action with N f = 2 using the CLS configurations [3].

2. The generalized Hopping Parameter Expansion

The O(a)-improved Wilson-Dirac operator has the form [4]

DSW =
1

2κ
1+ cSW B− 1

2
H (2.1)

with the hopping parameter κ , the O(a)-improvement term cSW B and the hopping matrix H, which
contains all contributions that couple neighboring lattice points. Equation (2.1) can be rewritten as

DSW = A− 1
2

H = A
(
1− 1

2
A−1H

)
, (2.2)
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Figure 2: standard deviation of the gauge mean of the loop

where A = (2κ)−11+ cSW B. To obtain the propagator, i.e. the inverse of DSW , a geometric series
expansion in κ can be performed,

D−1
SW =

k−1

∑
i=0

(
1
2

A−1 H
)i

A−1 +

(
1
2

A−1 H
)k

D−1
SW . (2.3)

Here the inverse of the matrix A is needed. For cSW = 0 the inverse A−1 is trivial and (2.3) is a
series expansion in κ , called hopping parameter expansion (HPE) [5]. With O(a)-improvement
(cSW 6= 0) a generalized HPE has to be applied. The local form of the improvement term implies
that the matrix A is block diagonal, such that two 6×6 matrices have to be inverted for each lattice
point, which is still comparatively cheap in computational costs.

The remaining inverse D−1
SW on the right-hand side of (2.3) can be calculated with N stochastic

sources |ηi〉 as follows [5]

DSW |si〉= |ηi〉 D−1
SW =

1
N ∑

i
|si〉〈ηi| . (2.4)

Therefore one has two parameters to tune - the number of stochastic sources N and the order k of
the HPE. In figure 2 the standard deviation divided by the gauge mean of the scalar loop

〈loop〉=
〈
∑

#»x
Tr
(
D−1(x,x)

)〉
G

(2.5)

is plotted against
√

N
−1

without HPE and with k = 2,4,6. One can clearly see that the noise is
reduced when applying more terms in the HPE. One finds the expected linear behavior in

√
N
−1

,
thus the y-axis intercept indicates the remaining gauge noise.

For the calculation of the scalar form factor we use N = 3 sources and k = 6 terms for the
generalized hopping parameter expansion, which gives a good balance between the accuracy of the
calculation and the computer time needed.
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Figure 3: The three contributions to the three-point function. The connected on the left, the discon-
nected with subtracted vacuum on the right.

3. Extracting the Form Factor

3.1 Two- and three point functions

The scalar form factor of the pion can be extracted using two- and three-point functions. The
pseudoscalar two-point function with momentum p is expected to behave like

C2pt(ts,p) = 〈φ(ts,p)φ(0,p)〉 ∼
Z2

p

2E(p)

[
e−Eπ ts + e−Eπ (T−ts)

]
. (3.1)

In expression (3.1) excited states are neglected and Zp = |〈π(p)|φ(0) |0〉| is the overlap of a pion
with the pseudoscalar field φ = qγ5q. For our calculations we put the pion source at t = 0 and the
pion sink at ts. The two summands in (3.1) correspond to the forward and the backward propagating
pion due to the periodic boundary conditions used in our simulations.

Now the scalar operator O = qq is inserted at a time t with 0 < t < ts. The corresponding
three-point function with subtracted vacuum contributions has the behavior

C3pt(t, ts,pi,p f ) =
〈
φ(ts,p f )O(t,q)φ(0,pi)

〉
∼ ZpiZp f

4Eπ(pi)Eπ(p f )

〈
π(p f )

∣∣O(q) |π(pi)〉e−(ts−t)Eπ (p f )e−tEπ (pi) (3.2)

with the momentum transfer q2 = (p f − pi)
2. As for the two-point function, excited states have

been neglected. The contributing diagrams are shown in figure 3.
The matrix element

〈
π(p f )

∣∣O(q) |π(pi)〉 in (3.2) now has to be extracted from the two- and
three-point functions.

3.2 Extracting the form factor

The form factor can be extracted from the three- and two-point data by building a ratio like [6]

R =

√
C3pt(t, ts,pi,p f )C3pt(t, ts,p f ,pi)

C2pt(ts,pi)C2pt(ts,p f )

∼
〈
π(p f )

∣∣O(q) |π(pi)〉
2
√

Eπ(pi)Eπ(p f )

√
e−Eπ (pi)tse−Eπ (p f )ts

(e−Eπ (pi)ts + e−Eπ (pi)(T−ts)) · (e−Eπ (p f )ts + e−Eπ (p f )(T−ts))
. (3.3)

As one can see, all undesired factors of Zp cancel in (3.3). Neglecting excited states, the ratio
is expected to be independent of the operator insertion time t. Only a simple dependence on ts
remains which is parameter-free, since Eπ(p) can be determined from the two-point functions.
This ts dependence is an effect of the finite lattice volume, since the two-point function has a
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Figure 4: Ratios for pi = p f = 0 plotted against t for fixed ts = 24
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Figure 5: Plateau values for pi = p f = 0 plotted against ts

backward propagating part as indicated in (3.1) when using periodic boundary conditions. For an
infinite time extent T → ∞, the ts dependence vanishes.

The calculation of the connected three-point function is performed with the extended propa-
gator method [7] and the loop in the disconnected contribution is estimated with stochastic sources
and the generalized HPE as described above.

Figures 4 to 6 show the results obtained from a 64× 323 lattice with a lattice spacing of
0.063fm and mπ = 443MeV, with high statistics of 1000 configurations.

In figure 4 the ratios for pi = p f = 0, i.e. vanishing momentum transfer, are plotted against
the time t of the operator insertion for a fixed ts = 24 as an example. In both the connected and
the disconnected part the data form a plateau and a constant is fitted to the plateau region. The
deviation from the plateau value near t = 0 and t = ts is due to excited state contributions which
have not been taken into account in (3.3). These ratios have been calculated for different values of
ts and the corresponding plateau values are plotted in figure 5. One can clearly see the expected ts
dependence due to finite volume effects. The deviation from the expected curvature at the smallest
ts indicate the contamination with excited states. A function of the form (3.3) can be fitted to the
data to obtain the connected and the disconnected contribution to the scalar form factor. To avoid
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Figure 6: Results for the connected part with q2 =−0.278GeV2

systematics from excited state contributions all points with ts < 24 have been excluded.
In figure 6 the results for the connected part with the smallest momentum transfer available

are shown. We have inserted the momenta via Fourier transformation, thus the smallest possible
momentum is |p|= 2π/L. As for non-vanishing momentum transfer the plateau values obtained for
the different ts can be plotted against ts and a function of the form (3.3) can be fitted to the data
(figure 6b).

For all ensembles we looked at so far, the smallest non-vanishing q2 is quite large and we do
not see a signal for the disconnected contribution which is different from zero within the errors.
This has to be investigated using ensembles with larger volumes and thus smaller q2.

3.3 A few words on Renormalization

Since our simulations are performed using O(a)-improved Wilson fermions, chiral symmetry
is explicitly broken. Therefore the scalar operator mixes with the identity and one obtains an
additive renormalization besides the multiplicative one.〈

OR〉= Zs 〈O−b0〉 (3.4)

However, the vacuum contributions have to be subtracted as illustrated in figure 3. When sub-
tracting the vacuum also the additive renormalization is subtracted such that the form factor is
independent of b0.

While Zs is required to obtain the correctly normalized scalar form factor, it drops out in the
determination of the scalar radius (cf (1.2)). All form factor data shown above are not renormalized,
since Zs has not been determined yet.

4. The scalar Radius

To determine the scalar radius
〈
r2
〉

s it is convenient to parametrize the form factor like

Fs(Q2) = Fs(0)
(

1− 1
6
〈
r2〉

s Q2 +O(Q4)

)
. (4.1)
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(4.1) implies that a rough estimate for
〈
r2
〉

s is possible with the form factor data from Q2 = 0 and
one other value of Q2. Since we are not yet able to resolve a signal for the disconnected part at
non-vanishing momentum transfer, we currently restrict the calculation of the scalar radius to the
connected part of the form factor. For the used ensemble we obtain

〈
r2
〉con

s = 0.164± 0.018fm2.
A recent calculation in χPT [8] has shown, that the disconnected contribution to the scalar radius
is of the same order as the connected one. While for Q2 = 0 we obtain a significant contribution
to the scalar form factor from the disconnected part, the disconnected contribution for Q2 6= 0
is consistent with zero. Assuming the disconnected part to be close to zero at the smallest non-
vanishing momentum transfer we obtain a rough estimate

〈
r2
〉

s ≈ 0.35fm2.

5. Conclusion

We have shown that the calculation of disconnected contribution to the scalar form factor of
the pion works for Q2 = 0 using Wilson fermions. The generalized hopping parameter expansion
is a useful tool to reduce the statistical error of the all-to-all propagator calculated with stochastic
sources. With the high statistics used for our calculation we are able to resolve the exited state
contributions for both the connected and the disconnected contributions.

Our data indicate that the disconnected contribution to the scalar radius is significant. The
smallest non-zero Q2 might still be too large to observe a non-vanishing contribution from discon-
nected diagrams. If true this would imply a very strong suppression of the scalar form factor as Q2

increases. This requires further investigations at smaller pion masses and larger volumes, which
are currently under way.
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