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1. Introduction

It is a well-known challenge to include the fermion determinant into the Boltzmann factor of
the desired ensemble. Many applications, like algorithms with Metropolis acceptance-rejection
steps or reweighting methods, require the ratio of such determinants. The main problem are the
fluctuations of the ratio due to the stochastic and the ensemble noise. In order to use and to improve
such methods it is essential to understand these fluctuations. In [1] we presented an algorithm
where we use the knowledge of these fluctuations to establishthe Partial-Stochastic-Multi-Step-
algorithm which reaches a high acceptance rate of 60% up to moderate lattice sizes of(1.2fm)4.
With this experience and some techniques we used, we study here the fluctuations in the case of
mass reweighting.

In these proceedings we will analyze the scaling of mass reweighting [2] by factorizing the
fluctuations into UV- and IR-dominated terms. This is done byusing domain decomposition [3].
The determinant of the (Wilson-)Dirac operator is then detD = detD̂detDwwdetDbb, where the
Schur complement is given bŷD = 1−D−1

bb DbwD−1
wwDwb with the Dirac operator in block notation

D =

[

Dbb Dbw

Dwb Dww

]

and accordingly D−1 =

[

Dbb Dbw

Dwb Dww

]

. (1.1)

The operatorDbb (Dww) is a block-diagonal matrix with the black (white) block Dirac operators on
the diagonal. The Schur complement can be restricted to the support ofDwb (using the projector
P defined byDwbP = Dwb) without changing its determinant and its inverse is then ofthe form
D̂−1 = 1−PDbwDwb.

2. Two Flavor Mass Reweighting

The idea of mass reweighting is to reuse an ensemble which is generated at a specific mass
m1 (the ensemble mass) at a different massm2 (the target mass). This is possible by correcting
the Boltzmann factor of the ensemble [4]. The correction fora configurationU enters as the
reweighting factorW(U,m1,m2) which is given by

W(U,m1,m2) =
detD(U,m2)

Nf

detD(U,m1)Nf
=

1
detMNf

(2.1)

with D(U,m) the (Wilson-)Dirac operator,Nf the number of flavors (=2) and the ratio matrix
M = D−1(U,m2)D(U,m1). The reweighting factor introduces additional noise in theevaluation of

observables〈O〉m2 =
〈OW〉m1
〈W〉m1

, the ensemble fluctuations. One can avoid the exact evaluation of the
determinant by an unbiased stochastic estimation of the integral

1
detM†M

=

∫

D[η ]D[η†]exp
{

−η†M†Mη
}

−→ 1
Nhit

Nhit

∑
i=1

e−η†
i (M

†M−1)ηi (2.2)

whereηi are complex Gaussian noise vectors,Nhit is the number of the estimates and one estima-
tion costs one inversion of the Dirac operator. This estimation introduces stochastic fluctuations
which are negligible if and only if the ensemble fluctuationsdominate the statistical error of the
measurement. We analyze these fluctuations by reweighting two Nf = 2 CLS-ensembles (O(a)
impr. Wilson fermions) of two different sizes 48× 243 and 64× 323 at β = 5.3 (a = 0.066 fm)
from the pseudoscalar mass ofmPS= 440 MeV to the target mass ofmPS= 310 MeV [5].
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2.1 Stochastic Fluctuations

The variance forNhit = 1 of the stochastic estimation is given by [6]

σ2
s =

1
det(2M†M−1)

− 1
(detM†M)2 . (2.3)

It follows that the variance is only defined if all eigenvalues of the ratio matrixM†M are larger than
1/2 and that every eigenvalue which is equal to one produces no stochastic noise. So every method
which shifts the eigenvalues of the ratio matrix to one improves the estimation. We will shortly
motivate and present two different methods which fulfill this condition, mass interpolation [2] and
domain decomposition [3].

It is obvious that the mass reweighting factorW(Ui ,m1,m2) is known if the spectrum of the
Wilson-Dirac operatorD(Ui,m2) is known

detM−1 =
12V

∏
i=1

λi(D(m2))

λi(D(m2))+∆m
(2.4)

where∆m= m1−m2. The product is dominated by the IR-modes. The eigenvalues of the ratio
matrix M = 1+∆m·D−1(m2) are given by

λ (M) = 1+∆m·λ (D−1(m2)). (2.5)

For the case that there is no negative eigenvalue it follows that λ (M†M) > 1 (for ∆m> 0). So if
we use the Wilson-Dirac operator each eigenvalue produces stochastic noise in particular also the
UV-modes. If we use the Schur complement, the operatorD−1(m2) in Eq. (2.5) is replaced by
an operator[Dbw(m2)−Dww(m2)D−1

ww(m1)Dwb]D
−1
bb (m1)Dbw which could have eigenvalues with a

negative or vanishing real part. With the Schur complement the ratio matrix has a spectrum which
is distributed around one.

In addition Eq. (2.5) implies that a smaller mass-shift would shift the eigenvalues closer to
one. This is easily achieved if one introduces an interpolation in the mass and by splitting up
the ratio matrix in several ratio matricesD(m1)/D(m2) = {D(m1)/D(mi)}{D(mi)/D(m2)}. This
technique works only if no real eigenvalue of the Wilson-Dirac operator becomes negative. In this
case the ratio matrix gets eigenvalues which are smaller than 1/2 and the stochastic estimation fails.
If this happens one has to use additional methods, like exacteigenvalue calculation, to calculate the
reweighting factor in an appropriate way. The estimation ofthe reweighting factor with the domain
decomposition is now given by

W =Wgl ·
Nblk

∏
k=1

detD2
k(m2)

detD2
k(m1)

(2.6)

wherek labels the white and black blocks. For moderate block sizesl4 ≤ 64 the exact calculation
of the block determinants is feasible while the global factor Wgl is estimated by usingN mass
interpolation steps andNhit estimations of each ratio

Wgl =
N

∏
i=1

{

1
Nhit

Nhit

∑
j=1

e−η†
i, j (M̂

†
i M̂i−1)ηi, j

}

(2.7)
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Figure 1: The figures show the stochastic fluctuations in the case of twoflavor mass reweighting by using
mass interpolation and domain decomposition for one configuration of the 48× 243 ensemble. In the left
figure we analyze the scaling in the number of mass interpolation stepsN while the total number of global
inversionsN ·Nhit is fixed to 640. We plot the estimated relative stochastic varianceσ2

s (W)/W2 against the
number of interpolation stepsN. The analysis shows that forN ≥ 8 it makes no difference if one increases
Nhit or N. If the eigenvalues ofM†

i Mi are close enough to oneσ2
s (W)/W2 scales with 1/NNhit . We fit the

asymtotic plateau for the total operator (star,blue), the even-odd preconditioned operator (equivalent to a
Schur complement with blocks of length l=1) (diamonds,magenta), the Schur complement with 64-blocks
(circle, red) and with 124 blocks (square,black). The right figure shows the results ofthe plateau fit against
the total dimension of the operators divided by the dimension of the global Wilson-Dirac operator. For the
Schur complement we only take the dimension of the projectorP into account.

where theith ratio matrix is given byMi = D̂−1(mi)D̂(mi−1) with the Schur complement̂D(mi)

depending on theith massmi = i/N ·m2+(N− i)/N ·m1. Inverting the Schur complement costs
one inversion of the Dirac operator.

In practice it is now easy to control the stochastic fluctuations by changing the number of
inversionsN ·Nhit , this is possible as long as there is no zero-crossing of the eigenvalues ofD(m).
To avoid a wrong estimation (zero-crossings form1 > m2) it is necessary to control the variance of
each factor in (2.7), which can be estimated by settingNhit ≥ 6. IncreasingN or Nhit is comparable,
if the eigenvalue distribution of the ratio matrixM†M is close to one, which can be achieved by
increasingN to sufficient value (see Fig. (1)).

Fig. (1) also shows the effect of using the Schur complement instead of the total Dirac operator.
For block sizesl ≥ 1 it is two times more efficient to use the Schur complement. Another conclusion
is that stochastic fluctuations do not scale with the dimension of the operator. It is obvious that the
remaining IR-modes dominate the fluctuations. In general wefind that the stochastic fluctuations
scale with∆m2V/(N ·Nhit).

2.2 Ensemble Fluctuations

The ensemble fluctuations enter the game if one wants to calculate an observable, which is
given for the target mass by〈O〉m2 =

〈OW〉m1
〈W〉m1

. The total variance of such an observable gets the
form [7],[8]
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Figure 2: The figures show the scaling ofσ2(lnW) with the volumeV and the mass shift∆m by using
60-100 configurations. The left figure shows the fluctuationsof the global factorσ2(lnW) multiplied by
1/V∆m2 against several mass shifts∆mwhile on the left side we plot the small volume and on the rightside
the bigger one (we write the parameters for the bigger in brackets). The ensemble noise is estimated with
Nhit = 6,N= 16,(48) and domain decomposition with 64(84) blocks. The 84 blocks are decomposed further
in a 84 Schur complement with Dirichlet boundaries and 44 blocks. The right figure show the fluctuations
for the global Schur complement multiplied by 1/

√
V∆m2 against several mass shits and different Schur

complements. The constant fit illustrate the weak volume dependence while
√

V is an upper estimate for
this dependence.

var(O)/Ncn f g∼
δO2

Ncn f g
τcorr

(

var(W)

〈W〉2 +1

)

(2.8)

whereδO2 is the variance of the observable without the reweighting factor,Ncn f g the total number
of configurations andτcorr the autocorrelation time. We observe that the mass reweighting factor is
distributed like a log-normal distributionρ(W) ∼ 1

W exp
{

− (lnW−µ)2

2σ2

}

. Then it is straightforward
to show that the ensemble noise is given by

(

var(W)

〈W〉2 +1

)

= eσ2
(2.9)

with σ2 = var(lnW).
In order to study the scaling ofσ2, we fix the stochastic noise to a small and volume indepen-

dent value. From Fig. (2) it follows directly thatσ2 = k1 ·∆m2 ·V for some constantk1, while we
observe that the Schur complement has only a weakV dependence. We appraise it with

√
V. The

V dependence ofW emerges through a large correlation between the factors of the block operators
and the Schur complement. In general mass reweighting in large volume is limited to small values
of ∆m.

3. One Flavor Mass Reweighting

Nature motivates one flavor reweighting. There are many effects which depend only on the
specific quark, like isospin splitting of the up- and down-quark. Also for corrections of a not exactly
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tuned strange quark mass it is necessary to calculate the mass reweighting factor for one flavor. For
that we introduce the integral

1
detM

=

∫

D[η ]D[η†]exp
{

−η†Mη
}

→ 1
Nhit

Nhit

∑
i=1

e−η†
i (M−1)ηi (3.1)

which is well defined only if Re(η†Mη)> 0 ∀ η 6= 0. The variance of the stochastic estimation is
given by

σ2
s =

1
det(M†+M−1)

− 1
detM†M

(3.2)

which is defined ifλ (M†+M)> 1. So it is possible to estimate the reweighting factor 1/detM as
long as the variance is defined. In general the scaling of one flavor mass reweighting is comparable
with the two flavor case (see Fig. (3)), but obviously there are some differences. The estimate
is complex. In practice one can use this to improve the estimator: because of theγ5 Hermiticity
the expectation value is real and one can neglect the imaginary part. We found that this trick
improves the estimation by a factor two compared to the square root trick [9]. In the case that a
real eigenvalue becomes negative it is not possible by usingmass interpolation to ensure that the
integral is defined. Another issue is that the estimate beingcomplex could have a negative sign.
We do not detect such problem if we suppress the stochastic noise to a proper level which is easily
achieved by increasing the number of mass interpolation steps.

The proposed one flavor estimation has many advantages and should be used in future appli-
cations.

4. Conclusion

In these proceedings we analyze the scaling behavior of massreweighting by studying the
stochastic and ensemble fluctuations with the methods mass interpolation and domain decompo-
sition. We find that the stochastic fluctuations scale like∆m2V/(N ·Nhit). By using domain de-
composition with block sizes withl ≥ 1 the fluctuations are reduced at least by a factor two. The
ensemble fluctuations of the full operator scales like∆m2V while for the Schur complement the
volume dependence is weaker and compatible with∆m2

√
V.

Assuming thatσ2
tot(lnW) = σ2(lnW)+ σ2

s
W2 the cost for the mass reweighting of the total op-

erator can be deduced from the number of the original configurations needed, given by

Ncn f g

τcorr
= Ne f f ·exp

{

∆m2 ·V
(

k1+
k2

NNhit

)}

+O(∆m3) (4.1)

for constantsk1 andk2 which depends on the ensemble parameters. Here we use the definition
of the number of effective configurationNe f f =

Ncn f g

τcorr

(

var(W)/〈W〉2+1
)

of [7] and an analytic
expansion of Eq. (2.3). ForNe f f = 50 we getNcn f g/τcorr = 1517(241509 (for the bigger volume) )
for N ·Nhit = 32 by fixingk2/(k1NhitN) = 0.11. If one consider a reweighting range of∆m/2 the
numbers change toNcn f g/τcorr = 117(741) using the same numbers of inversionsN ·Nhit = 32.
The total cost of evaluating the reweighting factor only scales with the volumeV but through the
V dependence of the ensemble fluctuations mass reweighting becomes rapidly inefficient for larger
volumes. This limits the reweighting range inm.
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Figure 3: The figures show the scaling of the stochastic fluctuations inthe case of one flavor mass reweight-
ing for one configuration of the smaller volume like in Fig. (1). We compare the one flavor reweighting
with the root-trick [9]. The root-trick is a biased estimator by using the square root of the two-flavor es-

timation 1/detM =
√

∫

D[η ]D[η†]exp{−η†M†Mη} →
√

1/Nhit ∑Nhit
i=1 exp{−η†

i (M
†M−1)ηi}. The right

figure shows the estimated relative varianceσ2(W)/W2 of the global Schur complement with 124 blocks
against the number of mass interpolation stepsN. The total number of inversions for each point is constant
with N ·Nhit = 640. The plot shows the difference of the stochastic fluctuations for one flavor case Eq. (3.1)
(red,triangle) and the root-trick (blue,diamonds). One can see that for all points the variance is finite, the
one flavor integral exists. The right figure shows the constant fit to the 1/NNhit -plateau for several operators
(compare Fig. (1)).

To conclude there are many more details to discuss and to describe in a more general style in
the framework of mass reweighting, like an analytic formulato characterize the stochastic estima-
tion, estimation with zero crossings or a proof for the one flavor integral Eq. (3.1). We want to
address this soon in an adequate way.
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