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We reinvestigate constraints on the eigenvalue density of the Dirac operator in the chiral sym-
metric phase of 2 flavor QCD at finite temperature, employing the overlap Dirac operator with
the exact chiral symmetry at finite lattice spacings to avoid possible ultra-violet(UV) divergences.
Studying multi-point correlation functions in various channels in the thermodynamical limit, we
obtain stronger constraints than those found in the previous studies that not only the eigenvalue
density at the origin but also its first and second derivatives vanish in the chiral limit of 2 flavor
QCD. In addition we show that the axial U(1) anomaly becomes invisible in susceptibilities of
scalar and pseudo scalar mesons.
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Chiral symmetry restoration and eigenvalue density of Dirac operator Sinya Aoki

1. Introduction

While the classical QCD Lagrangian with N f massless quarks poses SU(N f )L× SU(N f )R×
U(1)V× U(1)A chiral symmetry, U(1)A part is broken explicitly at quantum level by the anomaly
and then SU(N f )L× SU(N f )R part is spontaneously broken to SU(N f )V in the QCD vacuum. On
the other hand, it is expected that the SU(N f )L× SU(N f )R chiral symmetry is recovered above the
critical temperature Tc, and and the first principle lattice QCD calculations support this expectation.
It still remains an open question, however, if, how and when the U(1)A part is restored.

The question whether the U(1)A symmetry is restored or not near Tc is of phenomenological
importance[1]. Furthermore a connection between the restoration of U(1)A symmetry and the
gap in the eigenvalue density of Dirac operator near the origin is suggested[2]. In principle, the
fate of U(1)A symmetry can be investigated by numerical lattice QCD simulations. On going
four simulations with different quark actions, however, have reported different results[3, 4, 5, 6].
Analytical investigations in the continuum QCD are also inconclusive[7, 8]

In this report, we address these problems on a lattice, but using an analytic method. We con-
centrate on N f = 2 case and employ the overlap Dirac operator[9, 10], which ensures the exact
chiral symmetry[11] through the Ginsparg-Wilson (GW) relation[12] while breaks the U(1)A sym-
metry by the fermionic measure[13]. Using the spectral decomposition of correlation functions
and assuming the restoration of the non-singlet chiral symmetry, we extract new constraints on the
Dirac eigenvalue density in addition to the manifest one implied by the Banks-Casher relation[14].
We also discuss the fate of U(1)A symmetry at T ≥ Tc using these constraints.

In Sec. 2, we explain our setup and assumptions of our analysis. Our main results, constraints
on the eigenvalue density, are given in Sec. 3. The fate of U(1)A symmetry is discussed in Sec. 4.
For more details of our analysis and results, see Ref. [15].

2. Setup

2.1 Spectral decomposition of the overlap fermions

The quark part of N f -flavor lattice QCD action is given by

SF = a4 ∑
x

[ψ̄D(A)ψ +mψ̄F(D(A))ψ] (x), F(D) = 1− Ra
2

D, (2.1)

where ψ = (ψ1,ψ2, · · · ,ψN f )
T denotes the set of N f quark fields with the degenerate mass m, a is

the lattice spacing, and D(A) is the overlap Dirac operator[9, 10] for a given gauge configuration
A, which satisfies the GW relation[12] that

D(A)γ5 + γ5D(A) = aD(A)Rγ5D(A), (2.2)

with an arbitrary constant R, and the γ5 hermiticity that D(A)† = γ5D(A)γ5.
Let us consider eigenvalues and eigenfunctions of D(A), D(A)φ A

n = λ A
n φ A

n . The GW relation
implies that

λ A
n + λ̄ A

n = aRλ̄ A
n λ A

n , D(A)γ5φ A
n = λ̄ A

n γ5φ A
n , (2.3)
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Chiral symmetry restoration and eigenvalue density of Dirac operator Sinya Aoki

where λ̄ A
n is a complex conjugate of λ A

n , and γ5φ A
n is the corresponding eigenfunction. With an

inner product defined by ( f ,g) = a4 ∑x f †(x)g(x), eigenfunctions with complex eigenvalues can
be ortho-normal as (φ A

n ,φ A
m) = (γ5φ A

n ,γ5φ A
m) = δnm and (φ A

n ,γ5φ A
m) = 0. For the real eigenvalues,

λ A
k = 0 (zero modes) and λ A

K = 2/(Ra) (doubler modes), corresponding eigenfunctions can be
made chiral, so that we denote the number of left(right)-handed zero modes as NA

L (NA
R ) and that of

doubler modes as nA
L(nA

R).
The propagator of the massive overlap quark for each flavor can be expressed in terms of these

eigenvalues and eigenfunctions as

SA(x,y) = ∑
{Imλ A

n >0}

[
φ A

n (x)φ A
n (y)†

fmλ A
n +m

+
γ5φ A

n (x)φ A
n (y)†γ5

fmλ̄ A
n +m

]

+
NA

R+L

∑
k=1

φ A
k (x)φ A

k (y)†

m
+

nA
R+L

∑
K=1

φ A
K (x)φ A

K (y)†

2/(Ra)
, (2.4)

where fm = 1−Rma/2, NA
R+L = NA

R +NA
L and nA

R+L = nA
R + nA

L . A measure for a given gauge field
A can be also written in terms of eigenvalues as

Pm(A) = e−SY M(A) mN f NA
R+L ΛN f nA

R+L
R ∏

{Imλ A
n >0}

(
Z2

mλ̄ A
n λ A

n +m2)N f
, (2.5)

where SY M(A) is the gauge part of the action, ΛR = 2/(Ra) and Z2
m = 1−m2/Λ2

R. For even N f ,
Pm(A) is positive semi-definite and even function of m. In this talk, we consider the N f = 2 case.

It is important to note that all quantities consist of SA(x,y) and Pm(A) are finite at finite vol-
ume (V < ∞), the nonzero quark mass (m 6= 0) and the finite lattice spacing (a 6= 0). We then
carefully take the V → ∞ limit and then m → 0 limit, without worrying about possible ultra-violet
divergences, until the continuum limit is taken.

2.2 Chiral Ward-Takahashi identities on the lattice

With the GW relation, the lattice quark action at m = 0 is invariant under lattice chiral rotation[11]
that

δaψ(x) = iθTaγ5 [1−RaD(A)]ψ(x), δaψ̄(x) = iθψ̄(x)Taγ5, (2.6)

where θ is an infinitesimal real parameter, and Ta for a = 1,2, · · · ,N2
f −1 denotes the generator of

SU(N f ), and T0 = 1N f×N f for U(1)A.
For the volume-integrals of scalar and pseudo scalar density operators defined by

Sa = a4 ∑
x

[ψ̄TaF(D(A))ψ] (x), Pa = a4 ∑
x

[ψ̄Taγ5F(D(A))ψ] (x), (2.7)

it is easy to show for N f = 2 that

δbSa = 2δabP0, δbPa = −2δabS0, (for a,b = 1,2,3), (2.8)

δ0Sa = δaS0 = 2Pa, δ0Pa = δaP0 = −2Sa, (for a = 0,1,2,3). (2.9)

3
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Chiral symmetry restoration and eigenvalue density of Dirac operator Sinya Aoki

If the chiral symmetry is restored, a product of these operators, On1,n2,n3,n4 = Pn1
a Sn2

a Pn3
0 Sn4

0 with
a = 1,2,3, satisfies the chiral Ward-Takahashi (WT) identities that

lim
m→0

lim
V→∞

1
V l 〈δaOn1,n2,n3,n4〉m = −δa0 lim

m→0
lim

V→∞

1
V l 〈J0On1,n2,n3,n4〉m (2.10)

where

〈O(A)〉m ≡ 1
Z

∫
DAPm(A)O(A), Z =

∫
DAPm(A), (2.11)

J0 = −2iN f a4 ∑
x

∑
N=n,k,K

φ A
N (x)†γ5

(
1− R

2
aD

)
φ A

N (x) = −2iN f Q(A), (2.12)

Q(A) = NA
R −NA

L is the index of the overlap Dirac operator[13] for a given gauge configuration A,
and l is a minimum integer which makes the V → ∞ limit finite in the above equation. Here J0

represents the effect of the U(1)A anomaly.

2.3 Basic properties and assumptions

The eigenvalue density for a given gauge configuration A is defined by

ρA(λ ) = lim
V→∞

1
V ∑

{Imλ A
n >0}

δ
(

λ −
√

λ̄ A
n λ A

n

)
, (2.13)

which is insensitive to the temperature T , since T is fully controlled by Pm(A). Note that ρA(λ )
is positive semi-definite for an arbitrary value of λ for all A. Although the original eigenvalue
spectrum at finite V is a sum of delta functions, we expect in the V → ∞ limit that ρA(λ ) becomes
a smooth function. We further assume that ρA(λ ) can be analytically expanded around λ = 0 that
ρA(λ ) = ∑∞

n=0 ρA
n λ n/n! within an arbitrary small convergence radius ε . More precisely we here

assume that configurations which do not have the expansion (2.13) are measure zero in the path
integral with Pm(A).

In the following analysis, we assume that the vacuum expectation values of m-independent
function O(A) is analytic function of m2 in the chiral symmetric phase. Under this assumption, if
limm→0〈O(A)l0〉/mk = 0 for a non-negative integer k and a positive integer l0 for an m-independent
and positive semi-definite function O(A), we can write

〈O(A)l0〉m = m2([k/2]+1)
∫

DAP̂(m2,A)O(A)l0 , (2.14)

where [r] is the largest integer not larger than r, P̂(0,A) > 0 at least for some A. In other words,
the leading m dependence arises from the contribution of configurations which satisfy P̂(0,A) > 0.
Using this expression, it is easy to show

〈O(A)l〉m = m2([k/2]+1)
∫

DAP̂(m2,A)O(A)l = O(m2([k/2]+1)) (2.15)

for an arbitrary positive integer l, since O(A)l0 and O(A)l are both positive and therefore share the
same support in the configuration space.
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3. Constraints on eigenvalue density

In this section, we derive constraints on the eigenvalue density of the Dirac operator in the
SU(2)L× SU(2)R chiral symmetric phase. In this case, the non-singlet WT identities are written as

lim
m→0

lim
V→∞

1
V l 〈δaOn1,n2,n3,n4〉m = 0, On1,n2,n3,n4 ∈ O

(N)
a (3.1)

for a 6= 0, where

O
(N)
a ≡

{
On1,n2,n3,n4

∣∣∣∣∣n1 +n2 = odd , n1 +n3 = odd , ∑
i

ni = N

}
(3.2)

is a set of non-singlet and parity odd operators of degree N. Explicitly we have

δa

2
On1,n2,n3,n4 = −n1On1−1,n2,n3,n4+1 +n2On1,n2−1,n3+1,n4 −n3On1,n2+1,n3−1,n4 +n4On1+1,n2,n3,n4−1.

3.1 Constraints at N = 1

At N = 1, there is only one operator O1000 = Pa in O
(N=1)
a , which gives δaPa = −2S0. Using

the decomposition in Eq. (2.4), we have

lim
V→∞

1
V
〈−S0〉m = lim

V→∞

N f

mV
〈NA

R+L〉m +N f 〈I1〉m, (3.3)

where

I1 =
∫ ΛR

0
dλ ρA(λ )

2mg0(λ 2)
Z2

mλ 2 +m2 = πρA
0 +O(m), g0(x) = 1− x

Λ2
R

(3.4)

for small m. The WT identity now becomes

lim
m→0

lim
V→∞

1
V
〈−S0〉m = lim

m→0
lim

V→∞

N f

mV
〈NA

R+L〉m +N f lim
m→0

〈I1〉m = 0 (3.5)

Since both NA
R+L and I1 are positive, the above equation gives two constraints that

lim
V→∞

N f

mV
〈NA

R+L〉m = O(m2), 〈ρA
0 〉m = O(m2). (3.6)

3.2 Contribution from zero modes at general N

Before considering N = 2,3,4 cases in detail, we discuss the fate of zero mode contributions
using WT identities at general N. Let us consider O1,0,0,N−1 ∈ O

(N)
a . The dominant term in the

non-singlet chiral WT identity in the large volume limit is given by

− 1
V N 〈SN

0 〉 = −(−1)NNN
f

〈(
NA

R+L

mV
+ I1

)N〉
m

+O(V−1). (3.7)

Therefore, the positivity of NA
R+L and I1 leads to

lim
V→∞

〈(NA
R+L)

N〉m

V N = O
(

m2[N/2]+2
)

. (3.8)

Since this holds for an arbitrary N, and NA
R+L does not explicitly depend on m, we conclude

that lim
V→∞

〈NA
R+L〉m/V = 0 at small but non-zero m.

5
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3.3 Constraints at N = 2

At N = 2 there are two conditions from the WT identities,

χσ−π =
1

V 2 〈S
2
0 −P2

a 〉m → 0, χη−δ =
1

V 2 〈S
2
0 −P2

a 〉m → 0, (3.9)

the former of which has already been examined in the previous subsection. In terms of eigenvalues,
we have

lim
V→∞

χη−δ = lim
V→∞

〈
−

N2
f

m2V
Q(A)2

〉
m

+N f

〈
I1

m
+ I2

〉
m

, (3.10)

where I2 is defined by

I2 = 2
∫ ΛR

0
dλ ρA(λ )

m2g2
0(λ 2)−λ 2g0(λ 2)
(Z2

mλ 2 +m2)2 '
(

2
ε

+
2ε
Λ2

R

)
ρA

0 +
(

2+
ε2

Λ2
R
− log

ε2

m2

)
ρA

1 +O(1).

Using
I1

m
+ I2 = ρA

0
π
m

+2ρA
1 +O(m), (3.11)

and 〈ρA
0 〉m = O(m2), the condition that limm→0 χη−δ = 0 implies

lim
V→∞

N f 〈Q(A)2〉m

m2V
= 2〈ρA

1 〉m +O(m2). (3.12)

3.4 Constraints at N = 3,4

Five independent WT identities at N = 3 give constraints that

〈ρA
0 〉m = −m2

2
〈ρA

2 〉m +O(m4), lim
V→∞

〈Q(A)2ρA
0 〉m

m2V
= O(m2). (3.13)

Note that the second condition does not necessary give stronger constraint than 〈Q(A)2〉m = O(m2V )
and 〈ρA

0 〉m = O(m2), since it only requires that a set of gauge configuration which satisfy both
Q(A)2 = O(V ) and ρA

0 = O(1) has a weight proportional to m4.
After a little complicated manipulation, WT identities at N = 4 lead to[15]

〈ρA
0 〉m = O(m4), 〈ρA

1 〉m = O(m2), 〈ρA
2 〉m = O(m2), lim

V→∞

〈Q(A)2〉m

V
= O(m6). (3.14)

3.5 Final results

We finally obtain

lim
m→0

〈ρA(λ )〉m = 〈ρA
3 〉0

λ 3

3!
+O(λ 4). (3.15)

We think that this condition is the strongest since we know that the N f = 2 massless free quark
theory has non-zero 〈ρA

3 〉0 keeping the exact non-singlet chiral symmetry. Constraints at N = 4k
(k = 1,2, · · ·) in addition lead to 〈ρA

0 〉m = 0 at a small but non-zero m.
For the discrete zero modes, we have obtained

lim
V→∞

1
V
〈NA

R+L〉m = 0, lim
V→∞

1
V
〈Q(A)2〉m = 0 (3.16)

at a small but non-zero m, so that these zero-modes give no contribution to susceptibilities in the
WT identities.

6
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4. Discussions: singlet susceptibilities

For the results in the previous section, the singlet WT identity at N = 2 vanishes as

χπ−η =
1

V 2 〈P
2
a −P2

0 〉m = lim
V→∞

N2
f

m2V
〈Q(A)2〉m = 0 (4.1)

for small but non-zero m, if the non-singlet chiral symmetry is restored at T ≥ Tc.
For more general cases, the singlet WT identities is written as

lim
m→0

lim
V→∞

1
V l 〈δ0O〉m = 2iN f lim

m→0
lim

V→∞

1
V l 〈Q(A)O〉m (4.2)

where l is the minimum integer which makes the V → ∞ limit finite. After a little algebra, the
right-hand side of the above equation becomes[15]

lim
V→∞

1
V l 〈Q(A)O〉m = lim

V→∞

〈
Q(A)2

mV
×O(V 0)

〉
m

= 0 (4.3)

at small but non-zero m, thanks to Eq. (3.16). We therefore conclude that, for a class of operators
considered in this report, the U(1)A breaking effect is invisible in the V → ∞ limit. This result
suggests that the chiral phase transition for 2 flavor QCD is likely to be of first order[1], contrary
to the naive expectation that the transition belongs to the O(4) universality class.

This work is supported in part by the Grant-in-Aid of MEXT (No. 22540265), the Grant-in-
Aid for Scientific Research on Innovative Areas (No. 2004: 20105001, 20105003, 23105701,23105710)
and SPIRE (Strategic Program for Innovative Research).
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