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Expressions for the Wick contractions contributing to the scalar pion form-factor were computed
model-independently in chiral perturbation theory at next-to-leading order. The results reveal
correlations amongst the different contractions in terms of low-energy constants and allow for
extrapolating lattice data for individual Wick contractions. The quark disconnected contribution
to the real part of the form factor turns out to be suppressed with respect to the quark connected
one. The corresponding contribution to the scalar radius has the same size as the connected
contribution and can therefore not be neglected.
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1. Introduction

Quark disconnected Wick contractions constitute a considerable numerical problem for lattice
QCD. An estimate of the full quark-propagator is needed and the signal-to-noise ratio typically
leaves a lot to be desired. In current simulations in the iso-spin symmetric limit disconnected con-
tractions contribute to a number of phenomenologically relevant quantities (g−2, ππ-scattering,
hadronicK-decays, . . . ). The situation becomes worse once also iso-spin breaking effects are in-
cluded in the simulations since disconnected contributions will then contribute in a larger variety
and to many more quantities.

Given the difficulties in computing quark disconnected contractions to a satisfactory precision
in lattice simulations one often neglects them, thereby introducing an unknown systematic effect.
Large efforts therefore go into devising dedicated algorithms for improving the numerical evalu-
ation of quark-disconnected diagrams (e.g. [3, 4, 2]). Here, an analytical and model-independent
approach for computing individual Wick contractions in chiral perturbation theory which was pre-
sented in [5] is applied to the case of the scalar pion form factor [6] for QCD with Nf = 2 and
Nf = 2+ 1 dynamical flavours. At next-to-leading order (NLO) in the chiral expansion the con-
tribution of the disconnected contraction to the form-factor is numerically small. Both the discon-
nected and the connected contribution however contribute with roughly the same magnitude to the
scalar radius. The connected and disconnected contributions turn out to be correlated in terms of
low-energy constants of the chiral Lagrangian. The expressions derived here can be used to guide
chiral extrapolations of lattice results for individual Wick contractions. As an aside the argument
allowing to compute the quark-connected part with partially twisted boundary conditions [7, 8] for
an improved momentum resolution for the scalar form factor is presented.

2. Technique

The scalar form factor of the pion is defined as

〈π i(p′)|ūu+ d̄d|π j(p)〉= δ i j FS,2(t) , (2.1)

wheret = (p′− p)2 is the squared momentum transfer between the initial and final pion and the
sub-script on the r.h.s. identifies the scalar form factor for Nf = 2 flavour QCD. In lattice QCD the
matrix element on the l.h.s. is computed in terms of the ground-state contribution to the Fourier
transform of the Euclidean 3-pt. function

〈

Oi(z)S(y)Oi †(x)
〉

, (2.2)

constructed of the interpolating operatorsOi(x) = ψ̄2τ iγ5ψ2(x) andS(x) = ψ̄2(x)ψ2(x). TheψT
2 =

(u,d) areSU(2) flavour vectors ofu- andd-quarks and the matricesτi = σi/2 are proportional to
the Pauli matrices. Following [5] the two types of Wick contractions contributing to this correlation
function are

〈ūγ5dd̄dd̄γ5u〉= 〈ūγ5vv̄dd̄γ5u〉+ 〈ūγ5dv̄vd̄γ5u〉 . (2.3)

Note the additional valence quarkv with mu = md = mv that was introduced in order to construct
the decomposition on the r.h.s.. At this stage the connectedcontribution consists entirely of flavour
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off-diagonal currents and the argument presented in [9, 5] allows to compute at least this contribu-
tion using partially twisted boundary conditions, thus improving the momentum resolution. Each
individual term on the r.h.s. represents an unphysical correlation function in the unphysical theory,
QCD with an additional valence quarkv. The expression in chiral effective theory for the ground
state contribution to the l.h.s. has been derived many yearsago in chiral perturbation theory at
NLO [10, 11] and later at NNLO [12, 13] in bothSU(2) andSU(3) chiral perturbation theory. The
effective theory frame work for the computation of the corresponding contributions to the r.h.s. is
partially quenched chiral perturbation theory (PQχPT) [14, 15] which is a frame-work allowing
to vary the sea-quark and valence-quark content independently. While the individual terms on the
r.h.s. represent unphysical matrix elements, their sum represents a physical process. It is therefore
conceivable to use different methods for the computation ofthe terms on the r.h.s.. The connected
contribution is conveniently computed in a lattice simulation. Where the disconnected contribution
is difficult to compute numerically the method advocated here can be applied.

3. PQχPT for the scalar form factor

According to [14, 15] the chiral effective theory forNf = 2 andNf = 2+ 1 QCD with an
additional valence quarkv is developed around the graded flavour symmetry groupsSU(3|1) and
SU(4|1), respectively. The leading order chiral Lagrangian is [10,14, 15, 16, 17]

L
(2) =

F2

4
Str

{

∂µU∂ µU†}+
F2

4
Str

{

χU†+Uχ†} , (3.1)

whereχ = 2B(s+M). The mass matrix has the formM = diag(mq,mq,mq,mq) in SU(3|1) and
M = diag(mq,mq,ms,mq,mq) in SU(4|1) and we define the external scalar source ass= 2Tasa

(with Ta a generator of the flavour group). The relevant counter termscan be derived from the
Lagrangian,

L (4) = L4Str
{

∂µU(∂ µU)†
}

Str
{

χU†+Uχ†
}

+L5Str
{

(

∂µU(∂ µU)†
)(

χU†+Uχ†
)

}

+L6Str
{

χU†+Uχ†
}2

+L8Str
{

Uχ†Uχ†+ χU†χU†
}2

.
(3.2)

The remaining calculation proceeds as in standard chiral perturbation theory. The known result for
the full form factor is reproduced,

FF
S,2(t) = 2B

{

1+
1

F2

(

−
1
2

Ām2
π

+ ΛF
2 +

(2t − m2
π)

2
B̄(m2

π , t)
)}

, (3.3)

FF
S,3(t) = 2B

{

1+
1

F2

(

−
1
2

Ām2
π
+

1
6

Ām2
η
+ ΛF

3 +
m2

π
18

B̄(m2
η , t)+

(2t −m2
π)

2
B̄(m2

π , t)+
t
4

B̄(m2
K , t)

)}

.

The expressions for̄Am2 andB̄(m2, t) are standard and can be found in [6]. The new results are the
individual expression for the connected (FC

S,Nf
) and disconnected contribution (FC

S,Nf
):

FC
S,2(t) = 2B

{

1+
1

F2

(

−
1
2

Ām2
π

+ΛC
2 +

(t −2m2
π)

2
B̄(m2

π , t)
)}

,

FD
S,2(t) = 2B

{

0+
1

F2

(

+ΛD
2 +

(t + m2
π)

2
B̄(m2

π , t)
)}

, (3.4)
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FC
S,3(t) = 2B

{

1+
1

F2

(

−
1
2

Ām2
π
+

1
6

Ām2
η
+ΛC

3 +
(t −2m2

π)

2
B̄(m2

π , t)+
t
4

B̄(m2
K , t)+

m2
π

3
B̄(m2

η ,m
2
π , t)

)}

,

FD
S,3(t) = 2B

{

0+
1

F2

(

+ΛD
3 +

(t + m2
π)

2
B̄(m2

π , t)+
m2

π
18

B̄(m2
η , t)−

m2
π

3
B̄(m2

η ,m
2
π , t)

)}

.

Note that for bothNf = 2 andNf = 2+1, FF
S = FC

S +FD
S , as expected. TheΛC/D

Nf
contain combi-

nations of the low energy constants (LECs),

ΛF
2 = 4

{

m2
π(−8L̃r

4−4L̃r
5+16L̃r

6+8L̃r
8)+t(2L̃r

4+ L̃r
5)
}

,

ΛC
2 = 4

{

m2
π(−4L̃r

4−4L̃r
5+8L̃r

6 +8L̃r
8)+t L̃r

5

}

,

ΛD
2 = 4

{

m2
π(−4L̃r

4 +8L̃r
6) +t 2L̃r

4

}

,

(3.5)

and
ΛF

3 = 4
{

m2
π(−6Lr

4−4Lr
5+12Lr

6+8Lr
8)+m2

K(−4Lr
4+8Lr

6)+t(2Lr
4+Lr

5)
}

,

ΛC
3 = 4

{

m2
π(−2Lr

4−4Lr
5+4Lr

6 +8Lr
8)+m2

K(−4Lr
4+8Lr

6)+t Lr
5

}

,

ΛD
3 = 4

{

m2
π(−4Lr

4 +8Lr
6) +t 2Lr

4

}

.

(3.6)

TheLr
i are the LECs ofSU(3) chiral perturbation theory [16] and thẽLr

i are related to the better-
knownSU(2) LECs l r

i via matching,

ΛF
2 = t l r

4 +4m2
π l r

3 ,

ΛC
2 = t(l r

4−8L̃r
4)+4m2

π(l
r
3 +4L̃r

4−8L̃r
6) ,

ΛD
2 = t( +8L̃r

4)+4m2
π( −4L̃r

4+8L̃r
6) .

(3.7)

The remainingSU(3|1) constants̃Lr
4 andL̃r

6 are less well known since the corresponding terms in
theL(4)-Lagrangian can be removed in the case of the flavour groupSU(2) (trace-identities). For
Nf = 2+1 similar expressions for the individual Wick contractionscan be derived for the octet and
singlet form form factors

〈π i |ūu+ d̄d−2s̄s|πk〉 = δ ikF8
S(t) ,

〈π i |ūu+ d̄d+ s̄s|πk〉 = δ ikF0
S(t) .

(3.8)

From the expressions in eq. (3.4) we see that while the connected contribution to the form
factor starts at leading order, the disconnected contribution starts at NLO and is therefore expected
to be smaller in magnitude. Turning to the scalar radius〈r2〉 = 6dFS(t)

dt |t=0, the derivative with
respect to the momentum removes the leading term from the connected contribution and therefore
connected and disconnected contribution start contributing at the same order in the chiral power
counting.

Concentrating on theNf = 2+ 1-case we now fix the free parameters in the expression for

FF/C/D
S,3 (t) with input as summarised in table 1. The results for the 2-flavour case, which turn out

to be very similar both qualitatively and quantitatively, can be obtained after fixing thẽLr
i through

matching the unphysical LECs to the 3-flavour theory [6]. Theresults are shown in the plots in
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Lr
4 [18, 19] 0.14×10−3

Lr
5 [18, 19] 0.87×10−3

Lr
6 [18, 19] 0.07×10−3

Lr
8 [18, 19] 0.56×10−3

Table 1: Values for the 3-flavour low energy constants used in the illustration of the results. The subtraction
scale isµ = 0.77GeV.

figure 1 for the full form factor and the connected and disconnected contribution, respectively.
For the real part the magnitude of the disconnected contribution is sub-dominant in line with the
above observations. Above the two-pion threshold the disconnected contribution also contributes
to the imaginary part and is similar in magnitude to the connected contribution. Since the leading
contribution has no imaginary part this does not come as a surprise - the imaginary part in both the
connected and the disconnected contribution start at the same order, NLO. We also show the mass-
dependence of the scalar radius. What could have been anticipated from the first of the three plots
by observing that the slope aroundt = 0 of the connected and disconnected contribution is very
similar, is confirmed in the third plot - the connected and disconnected contributions to the scalar
radius are nearly of the same size. For a lattice simulation this underlines that the disconnected
contribution cannot be neglected [1, 2].

4. Conclusion

Partially quenched chiral perturbation theory proves to bea powerful tool for understanding
in detail the dynamics in the low-energy sector of QCD. The decomposition of correlation func-
tions into individual Wick contractions provides guidancefor lattice computations in various ways:
First of all an estimate of the magnitude of the disconnectedcontribution can be made in a model-
independent way. Secondly, NLO LECs can be extracted from only the connected contribution to
the form factor which is numerically much better accessiblein lattice simulations. The expression
does however contain new linear combinations of LECs and onehas to study whether the LEC one
is interested in can be extracted. Thirdly, a full computation of the form factor in lattice QCD is
still very challenging due to the numerical cost of computing the disconnected contribution to a
satisfactory precision. In this situation one can either compute only the connected contribution in
lattice QCD and predict the disconnected one, or one computes the connected contribution for a
large set of parameters, while the disconnected one only fora reduced set of parameters to fix the
LECs and to eventually extrapolate it to the physical point.

Acknowledgements: The research leading to these results has received funding from the
European Research Council under the European Union’s Seventh Framework Programme
(FP7/2007-2013) / ERC Grant agreement 279757.
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Figure 1: First row: the plots show the momentum dependence of the real(left) and imaginary (right) parts
of the scalar form factor forNf = 2+1: Full form factor (solid red), connected contribution (dotted blue)
and disconnected contribution (dashed green). The bottom plot shows the scalar radius forNf = 2+ 1 as
a function of the squared pion mass (mK is fixed to the physical value andm2

η = 4
3m2

K − 1
3m2

π , same color
coding as first row).
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