
P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
2
)
1
9
9

Staggered Chiral Perturbation Theory for
All-Staggered Heavy-Light Mesons

Javad Komijani∗ and Claude Bernard
Department of Physics, Washington University, St. Louis, MO 63130, USA
E-mail: jkomijani@wustl.edu

In HISQ simulations by the MILC and Fermilab Lattice collaborations, both the light quarks and
the charm quark are staggered. We extend staggered chiral perturbation theory (SχPT) to include
such all-staggered heavy-light mesons. We assume that the heavy quark action is sufficiently
improved that we may take amQ << 1 (where mQ is the heavy quark mass), but also that mQ >>

ΛQCD so that a continuum heavy quark expansion is appropriate. Using this SχPT, the leptonic
decay constant of the heavy-light meson is calculated at next-to-leading-order. The pattern of
taste splittings in the heavy-light meson masses is also investigated.

The 30th International Symposium on Lattice Field Theory – Lattice 2012
June 24–29, 2012
Cairns, Australia

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:jkomijani@wustl.edu


P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
2
)
1
9
9

SχPT for All-Staggered Heavy-Light Mesons Javad Komijani

1. Introduction

Heavy-light meson systems provide some of the best ways to test the Standard Model and
look for signs of new physics. Lattice QCD provides a means of carrying out non-perturbative
calculations from first principles and with controlled errors. In setting up a lattice QCD calculation,
a key choice is the form of the lattice action for the quarks.

Staggered fermions [1] are an efficient approach to simulating light quarks. The “highly im-
proved staggered quark” (HISQ) action [2] makes it possible to treat charm quarks with the same
action as the light quarks. Thus “all-staggered” simulations of D and Ds mesons are now possible
[3]. There are several advantages to this all-staggered approach. Probably the most important is
that, since heavy and light quarks have the same action, there are partially conserved heavy-light
axial and vector currents, which therefore need no renormalization.

Lattice computations often involve an extrapolation in light quark masses to the physical up
and down masses, and always require a continuum extrapolation in lattice spacing. A version of
chiral perturbation theory (χPT) that includes the effects of the discretization errors can help to
control these extrapolations. Here, we develop chiral perturbation theory for all-staggered heavy-
light mesons.

Reference [4] works out a closely related chiral theory for heavy-light mesons with staggered
light quarks but non-staggered heavy quarks (for example, Fermilab [5] or NRQCD [6] quarks). In
that case, the doubler states of a heavy quark are treated as integrated out, and therefore, heavy-
light mesons have a single taste degree of freedom associated with the light quark. Here, we need
to extend the program developed in Ref. [4] to include staggered heavy quarks with a taste degree
of freedom. We assume that the staggered action used (e.g., HISQ) is improved sufficiently that we
can treat the heavy quark as “continuum-like,” with small corrections from cutoff effects. We refer
to this assumption in short-hand as taking amQ� 1, where mQ is mass of the heavy quark. We can
then use the Symanzik effective theory (SET) [7] to describe the discretization effects on the heavy
quarks, as well as on the light quarks.

In the continuum limit, there is an exact SU(4) symmetry acting on tastes; this symmetry is
broken at O(a2) in the lattice spacing a. The corresponding discretization errors in the light-light
sector split the masses of mesons with different tastes, which may be understood using staggered
chiral perturbation theory (SχPT) [8, 9]. For typical values of a2, the taste splittings of the light
pseudoscalar mesons can be comparable to the masses themselves. Schematically, we say a2 ∼m2

π ,
where appropriate powers of ΛQCD or Λχ (the chiral scale) are implicitly inserted to match the
dimensions in such comparisons. The taste splittings are therefore included in the leading order
(LO) light-light Lagrangian, which is of O(m2

π).
For heavy-light mesons composed of staggered quarks, the situation is different. The LO La-

grangian in the continuum is of O(k), where k is the residual momentum of the heavy-light meson,
and we assume that k ∼ mπ . Thus, it is reasonable to treat taste violations, which are of O(a2),
as next-to-leading order (NLO) corrections, and that is what we do here. The LO heavy-light La-
grangian is then taste invariant. This power counting can be checked with HISQ simulations, where
the splittings in squared meson masses remain roughly constant as one increases a valence quark
mass from the light quark regime to the charm regime [10]. (See also Fig. 1 below.) Therefore
the splittings for the masses themselves are much smaller for heavy-light mesons than for light
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mesons. For example, at a ≈ 0.12 fm the measured [10] taste splitting between the root-mean-
squared (RMS) Ds meson and the lightest Ds meson is only about 11 MeV, while it is about 110
MeV for the pion (80% of mπ ).

2. The SχPT Lagrangian for Heavy-Light Mesons

We first discuss a heavy-light meson where the light quark has a taste degree of freedom,
but the heavy quark does not [4]. Due to the heavy quark spin symmetry in the static limit, the
heavy vector and pseudoscalar mesons are incorporated into the following field, which destroys a
heavy-light meson,

Ha =
1+ v/

2
[
γ

µB∗µa + iγ5Ba
]

, (2.1)

where v is the meson’s velocity, and a is the combined light quark flavor-taste index. Note that
we use B to denote a generic pseudoscalar heavy meson and B∗ to denote the corresponding vector
meson, but the practical application of this calculation will, at least in the first instance, be to D
mesons.

Now, we assume the heavy quark is also implemented by a staggered fermion. Then we
generalize the definition of the annihilation operator of a heavy-light meson as

Hαa =
1+ v/

2
[
γ

µB∗µαa + iγ5Bαa
]

, (2.2)

where v is the meson’s velocity, α is the heavy-quark taste index, and a is the combined flavor-taste
index of the light quark. The conjugate field creates a heavy-light meson

Haα ≡ γ0H†
aαγ0 =

[
γ

µB†∗
µaα + iγ5B†

aα

] 1+ v/
2

. (2.3)

So far H is treated as a 4× 4n matrix in the taste and the flavor space of quarks. Instead of
attaching separate indices to the tastes of the light and the heavy quarks, one might use just one
index as the taste of the meson. Then, one treats H as a n-component vector in the flavor space
of the light quark, while each element (Hi) is a 4× 4 matrix in the taste space of the meson. To
implement this approach, the light flavor-taste index is first traded for a pair of indices representing
flavor and taste separately. We use Latin indices in the middle of the alphabet (i, j, ...) as pure
flavor indices. We can then combine the tastes of the heavy and the light quarks and use an index
such as Ξ (where Ξ = 1, . . .16) as the taste of the meson. Therefore, the ith element of the field
destroying a heavy-light meson in the light flavor space can be represented by Hi = ∑

16
Ξ=1 HiΞTΞ and

its conjugate by H i = ∑
16
Ξ=1 H iΞTΞ, with the Hermitian taste generators TΞ ∈ {ξ5, iξµ5, iξµν ,ξµ ,ξI}.

The leading-order staggered version of the heavy-light meson Lagrangian then looks the same
as in the case with only light staggered fields, or indeed in standard continuum χPT, with the only
change being the extra taste degrees of freedom in the fields. The LO chiral Lagrangian involving
the heavy-light meson fields is:

L1 =−iTr(HHv·←D)+gπ Tr(HHγ
µ

γ5Aµ) , (2.4)

where (HH)ab ≡ HaαHαb, and Tr, here and below, means the complete trace over flavor and taste
indices and, where relevant, Dirac indices. This Lagrangian has separate SU(4) taste symmetries
on the heavy and light quarks, as well as spin symmetry of the heavy quark.
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To derive the heavy-light decay constants, we also will need the chiral representative of the
axial heavy-light current. Alternatively, one can work with the left-handed current. The left-handed
current that destroys a heavy-light meson of taste Ξ and light flavor i is jµ,iΞ, which at LO takes the
form

jµ,iΞ
LO =

κ

2
trD,t
(
TΞγ

µ (1− γ5)Hσ
†
λ

(i)) , (2.5)

where trD,t is a trace over Dirac and taste indices, and λ (i) is a constant row vector that fixes the
flavor of the light quark: (λ (i)) j = δi j. The decay constant fBiΞ is defined by the matrix element〈

0
∣∣∣ jµ,i′Ξ′

∣∣∣BiΞ(v)
〉

= i fBiΞ

√
mBiΞvµ

δΞΞ′δii′ , (2.6)

where the state |BiΞ(v)〉 is normalized non-relativistically, corresponding to our non-relativistically
normalized heavy meson field B. At LO in the heavy-light chiral theory, jµ,i′Ξ′

LO = iκvµBi′Ξ′ , which
gives f LO

BiΞ
= κ/

√mBiΞ .
To go beyond leading order, we must encode the discretization errors in the chiral theory.

To do this we consider a series of effective field theories. Assuming amQ << 1, we can derive
a Symanzik effective theory (SET) from the staggered lattice Lagrangian. One can then use the
fact that mQ is large compared to ΛQCD to organize heavy quark effects with heavy quark effective
theory (HQET). Finally, when residual momenta and light quark masses are small compared to the
chiral scale Λχ ∼ 1 GeV, the physics of light-light and heavy-light mesons may be described by
a chiral effective theory. Here, we assume the power counting p2

π ∼ m2
π ∼ mq ∼ a2 for the light

mesons as in Ref. [4].
There are three different types of 4-quark operators in the SET at order a2:

a2Oss′tt ′ = c1 a2ql(γs⊗ξt)qlql′(γs′⊗ξt ′)ql′

+ c2 a2ql(γs⊗ξt)qlqh(γs′⊗ξt ′)qh

+ c3 a2qh(γs⊗ξt)qhqh′(γs′⊗ξt ′)qh′ , (2.7)

where ql and qh are the light and heavy quark fields, and γs and ξt are any of the 16 spin or
taste matrices, respectively. The operators listed in Eq. (2.7) are generic, and stand for a linear
combination of all operators with the same heavy and light quark structure. The first type of
operator has only light quarks and hence respects the heavy taste symmetry. Its contributions to
the NLO chiral Lagrangian are thus essentially the same as those that appear when the heavy quark
has no taste, i.e., those of Ref. [4]. Although the third type breaks the heavy taste symmetry, it
contributes only in trivial ways to the heavy-light Lagrangian, which by definition has only two
meson fields and does not describe heavy-light meson scattering. New chiral terms arise only from
from the second type of operator, which has both heavy and light fields.

Using a spurion analysis, we find that the operators of the second type lead to the following
two contributions to the NLO Lagrangian:

L A2
2,a2 = KA1a2 Tr

(
Hξ5Hξ5

)
+KA2a2 Tr

(
HξµHξµ

)
+KA3a2 Tr

(
Hξ5µHξµ5

)
+KA4a2 Tr

(
HξµνHξνµ

)
+KA5a2 Tr

(
Hγ5µHγ

µ5)
+KA6a2 Tr

(
Hγ5µξ5Hγ

µ5
ξ5
)
+KA7a2 Tr

(
Hγµνξλ Hγ

νµ
ξλ

)
+KA8a2 Tr

(
Hγµνξ5λ Hγ

νµ
ξλ5
)
+KA9a2 Tr

(
Hγ5µξνλ Hγ

µ5
ξλν

)
, (2.8)
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and

L B2
2,a2 = ∑

µ

[
KB1a2 Tr

(
HγνµξµHγ

µν
ξµ

)
+KB2a2 Tr

(
Hγνµξ5µHγ

µν
ξµ5
)

+KB3a2vµvµ Tr
(
HξνµHξµν

)
+KB4a2 Tr

(
Hγ5µξνµHγ

µ5
ξµν

)]
, (2.9)

where L A2
2,a2 (the “type-A” contribution) results from operators that are invariant over the full Eu-

clidean space-time rotation group, SO(4), as well as a corresponding SO(4) of taste, and L B2
2,a2

(the “type-B” contribution) results from operators that couple spin and taste and break these SO(4)
symmetries.

3. Results and Conclusions
The O(a2) contributions to the Lagrangian, L A2

2,a2 and L B2
2,a2 , give different NLO mass correc-

tions to different tastes of the heavy-light mesons. The type-A terms split the masses into the five
SO(4) taste multiplets, labeled by I, V, T, A, and P. The type-B terms split these representations
and give different masses to the time and spatial components, such as ξ0 and ξi for the vector taste
(V) representation. Note that no splitting, either between SO(4) multiplets, or within the multi-
plets, comes from the one-loop diagrams. This can be proved using the exact SU(4) heavy-quark
taste symmetry of the LO Lagrangian and the discrete taste symmetry of the light quarks, which
corresponds to the shift symmetry in the staggered action [4].

Based on the pattern of splittings seen at LO in light mesons, the 4-quark operators with
the taste structure ξµ5 and spin I, γ5, or γµν appear to be dominant. These operators contribute
to the C4 chiral operator [9], which gives the characteristic P, A, T, V, I (lowest-to-highest) or-
dering of squared masses, with roughly equal spacing. Note that, for light mesons, only type-A
4-quark operators are relevant to LO, because type-B operators have no chiral representatives un-
til NLO [8]. Here the corresponding type-A 4-quark operators give rise to the chiral operators
KA3a2 Tr(Hξ5µHξµ5) and KA8a2 Tr(Hγµνξ5λ Hγνµξλ5). These produce the same equal-spacing
pattern for the SO(4) taste representations of heavy-light mesons: See Table 1. For type-B opera-
tors, one might guess that the taste ξµ5 and spin γµν 4-quark operator would be dominant, since it is
the only type-B operator that has the same spin and taste as one of the dominant type-A operators.
This 4-quark operator gives rise to the chiral operator ∑µ KB2a2 Tr(Hγνµξ5µHγµνξµ5). Table 2
shows the pattern of mass splitting that stems from this type-B operator.

The patterns given in Tables 1 and 2 are qualitatively present in the MILC data, shown in
Fig. 1. Note in particular the “sc” case, for which the errors are small enough that the pattern of
SO(4) breaking for heavy-light mesons is clear. It is non-trivial that the time component of taste
is higher than the space component in two cases (ξ0 vs. ξi and ξi0 vs. ξi j) but not in the third case
(ξ05 vs. ξi5), just as in Table 2. Although the chiral theory is not applicable to the “cc” case, it
is interesting to see that the structure that would correspond to the dominant type-B operator gets
particularly strong there, with near degeneracies of between members of different SO(4) multiplets,
in particular ξ0 and I, or ξi0 and ξi.

We can also calculate the decay constant of the heavy-light meson to NLO. At one loop, we
express the decay constant as

fBxΞ
= f LO

Bx

(
1+

1
16π2 f 2 δ fBx + analytic terms

)
. (3.1)
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Table 1: Taste splittings due to the apparently dominant type-A operators.

4mQ(ξ5) 4mQ(ξ5µ) 4mQ(ξµν) 4mQ(ξµ) 4mQ(I)

8a2(KA3 +4KA8) -4 -2 0 +2 +4

Table 2: Taste splittings due to the apparently dominant type-B operator.

4mQ(ξ5) 4mQ(ξ05) 4mQ(ξi5) 4mQ(ξi j) 4mQ(ξi0) 4mQ(ξi) 4mQ(ξ0) 4mQ(I)

8a2KB2 -6 -6 -2 -2 +2 +2 +6 +6

Figure 1: MILC HISQ ensemble at a≈ 0.15 fm and ml = 0.2ms [10]. Squared mass splitting between pions
of different tastes and the Goldstone pion in units of r1. The types of quarks in the mesons are shown on the
abscissa: l, s, and c stand for light (u,d), strange, and charm quarks, respectively.

The lowest order term f LO
Bx

depends only on the light valence flavor as f LO
Bx

= κ/
√mBx because

the taste splittings of heavy-light masses appear at NLO. We can divide the terms contributing to
the decay constant at NLO into two parts. The first part comes from the operators which obey the
SU(4) taste symmetry of the heavy quarks, while the second stems from those breaking the heavy
taste symmetry. The first part contributes both to the analytic terms and to the chiral logarithms,
δ fBx in Eq. (3.1). It is independent of the taste of the meson, and indeed is the same as the result
in Ref. [4], because it obeys both the residual discrete taste symmetry of the light quarks and the
SU(4) taste symmetry of the heavy quarks at LO. The second part contributes only to the analytic

6



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
2
)
1
9
9

SχPT for All-Staggered Heavy-Light Mesons Javad Komijani

terms in Eq. (3.1), which depend on the taste of the meson.
We find the decay constant of the heavy-light meson in the partially quenched case is:(

fBxΞ

f LO
Bx

)
1+1+1

= 1+
1

16π2 f 2
1+3g2

π

2

{
− 1

16 ∑
f ,Ξ′

`(m2
x f ,Ξ′)

− 1
3 ∑

j∈M (3,x)
I

∂

∂m2
X ,I

[
R[3,3]

j (M (3,x)
I ; µ

(3)
I )`(m2

j)
]

−
(

a2
δ
′
V ∑

j∈M (4,x)
V

∂

∂m2
X ,V

[
R[4,3]

j (M (4,x)
V ; µ

(3)
V )`(m2

j)
]
+[V → A]

)}
+ cs(mu +md +ms)+ cvmx + ca,Ξa2 , (3.2)

where x is the valence flavor, Ξ is the valence taste, f runs over the three sea quarks u, d, and s, Ξ′

runs over the 16 meson tastes, and other notation is explained in Ref. [4]. In Eq. (3.2), ca,Ξ is the
only coefficient which depends on the taste of the heavy meson.

In summary, we have generalized the chiral Lagrangian of a heavy-light meson to the case
where both heavy and light quarks have taste degrees of freedom. We have obtained the NLO
chiral Lagrangian, which breaks the SU(4) heavy taste symmetry. Moreover we have derived the
NLO decay constants and the taste splittings of the heavy-light masses, and have used them to
understand, qualitatively, the pattern of splittings seen in the heavy-light HISQ data.

We thank our colleagues in MILC for Figure 1, and Andreas Kronfeld for helpful discussions
on the use of effective theories for this problem. Our work was supported in part by the U.S.
Department of Energy under Grant DE-FG02-91ER40628.
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