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1. Introduction

Staggered chiral perturbation theory (SChPT) was developed to describe lattice data gener-
ated by staggered fermions, which have an exact chiral symmetry at nonzero lattice spacing. Using
SChPT, lattice results can be extrapolated to the physical quark masses and the continuum limit, re-
moving dominant lattice artifacts coming from the taste symmetry breaking of staggered fermions.

In Ref. [1], Aubin and Bernard calculated next-to-leading order (NLO) corrections to the decay
constants of taste Goldstone pions and kaons, associated with the exact chiral symmetry of the
staggered action, in SChPT. Here we extend the calculation to the taste non-Goldstone pions and
kaons.

In Sec. 2, we consider the leading order (LO) and NLO terms of the chiral Lagrangian that
contribute to the decay constants. In Sec. 3, we outline the calculation of NLO corrections to the
decay constants of taste non-Goldstone pions and kaons, and write results in a theory with three
flavors and four tastes for each flavor. In Sec. 4, we present the results for the partially quenched
case in the SU(3) and SU(2) SChPT, and we conclude in Sec. 5. Unless defined explicitly we use
the notation of Ref. [2].

2. Chiral Lagrangian for staggered quarks

The chiral Lagrangian for staggered quarks was formulated by Lee and Sharpe for the single-
flavor case [3] and generalized by Aubin and Bernard to multiple flavors [4]. In the standard power
counting,

O(p2/Λ
2
χ)≈O(mq/Λχ)≈ O(a2

Λ
2
χ), (2.1)

the order of a Lagrangian operator is the sum of non-negative integers, np2 , nm and na2 , which
are the number of derivative pairs, number of quark mass factors, and powers of the squared lat-
tice spacing in the operator, respectively. At LO, the Lagrangian operators fall into three classes:
(np2 ,nm,na2) = (1,0,0), (0,1,0) and (0,0,1), and we have

LLO =
f 2

8
Tr(∂µΣ∂µΣ

†)− 1
4

µ f 2Tr(MΣ+MΣ
†)+

2m2
0

3
(UI +DI +SI)

2 +a2(U +U ′) , (2.2)

where f is the decay constant at LO, µ is a constant in the unit of mass, M is the mass matrix,
Σ ≡ exp(iφ/ f ), and φ is the pseudo-Goldstone boson (PGB) field. The term multiplied by m2

0 is
the anomaly contribution, and U and U ′ are the taste symmetry breaking potentials defined in
Ref. [4].

At NLO, there are six classes that satisfy np2 + nm + na2 = 2. Operators in two classes con-
tribute to the decay constants: (np2 ,nm,na2) = (1,1,0) and (1,0,1). The contributing operators in
the class (1,1,0) are Gasser-Leutwyler terms [5],

LGL = L4Tr(∂µΣ
†
∂µΣ)Tr(χ†

Σ+χΣ
†)+L5Tr(∂µΣ

†
∂µΣ(χ†

Σ+Σ
†
χ)) , (2.3)

where L4 and L5 are low-energy constants (LECs) and χ = 2µM. The contributing operators in the
class (1,0,1) are terms given by Sharpe and Van de Water in Ref. [6].
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(a) (b)

Figure 1: Diagrams contributing to the decay constants. (a) is the wavefunction renormalization correction
and (b) is the current correction.

3. Decay constants of flavor-charged pseudo-Goldstone bosons

The decay constant fP+
t

for a flavor-charged PGB P+
t with taste t is defined by the matrix

elements
〈0| jP+

µ5,t |P+
t (p)〉=−i fP+

t
pµ , (3.1)

where jP+

µ5,t is the axial current. From the LO Lagrangian, the LO axial current is

jP+

µ5,t =−i
f 2

8
Tr
[
T t(3)PP+

(∂µΣΣ
† +Σ

†
∂µΣ)

]
, (3.2)

where T a(3) ≡ I3⊗T a, I3 is the identity matrix in flavor space, and PP+
is a projection operator

that chooses P+ from the Σ field, defined by PP+

i j = δixδ jy. For flavor-charged states, which are
the interest in this paper, x 6= y. Note that Σ = exp(iφ/ f ) can be expanded in terms of φ .

There are three types of NLO corrections to the decay constants: (a) one-loop wavefunction
renormalization correction from the O(φ) term of the axial current, δ f Z

P+
t

, (b) one-loop correction

from the O(φ 3) term of the axial current, δ f current
P+

t
, and (c) analytic contribution from the NLO

terms of the axial current and the analytic contribution to the self-energy, δ f anal
P+

t
. Combining these

three types of corrections (a) – (c), we write the decay constants:

fP+
t
= f

[
1+

1
16π2 f 2

(
δ f Z

P+
t
+δ f current

P+
t

)
+δ f anal

P+
t

]
. (3.3)

First we consider the wavefunction renormalization correction. Considering the O(φ) term of
the LO axial current, jP+,φ

µ5,t = f
(
∂µφ t

yx
)
, we find contributions to the decay constants,

〈0| jP+,φ
µ5,t |P

+
t (p)〉= f (−ipµ)〈0|φ t

yx|P+
t (p)〉= f (−ipµ)

√
ZP+

t
. (3.4)

Here ZP+
t
≡ 1+ δZP+

t
is the wavefunction renormalization constant of the φ field. δZP+

t
gives the

NLO correction to the decay constants,

δ f Z
P+

t
≡ 16π2 f 2

2
δZP+

t
=−16π2 f 2

2
dΣ(p2)

d p2 , (3.5)

where Σ(p2) is the self-energy of P+
t . Using the self-energy from Ref. [2], we find the one-loop

corrections

δ f Z
P+

t
=

1
24 ∑

a

[
∑
Q

l(Qa)+16π
2
∫ d4q

(2π)4

(
Da

xx +Da
yy−2θ

atDa
xy
)]

, (3.6)
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where l(Qa) is the chiral logarithm and Da
i j is the disconnected piece of the propagator. Here Q

runs over six flavor combinations, xi and yi for i ∈ {u,d,s}, a runs over the 16 PGB tastes in the
15 and 1 of SU(4)T , and Qa is the squared tree-level meson mass with flavor Q and taste a. The
self-energy also contains NLO analytic corrections to the decay constants, which we discuss below.

Next we consider the loop correction from the O(φ 3) terms of the LO axial current,

jP+,φ 3

µ5,t =− 1
24 f

τtabc

(
∂µφ

a
ykφ

b
klφ

c
lx−2φ

a
yk∂µφ

b
klφ

c
lx +φ

a
ykφ

b
kl∂µφ

c
lx

)
. (3.7)

The contractions in the calculation of the matrix element defined in Eq. (3.1) give the loop integrals.
Performing the loop integrals, we find the NLO current correction to the decay constants,

δ f current
P+

t
≡−1

6 ∑
a

[
∑
Q

l(Qa)+16π
2
∫ d4q

(2π)4

(
Da

xx +Da
yy−2θ

atDa
xy
)]

. (3.8)

Note that δ f current
P+

t
is proportional to δ f Z

P+
t

, which was shown for the taste Goldstone case in Ref. [1].
Now we consider the NLO analytic contributions to the decay constants. The terms from

the NLO Lagrangian noted in Sec. 2 (including the O(p2a2) source operators) give the analytic
contributions. The contributions of O(p2a2) terms may be written as f a2Ft . Here Ft are linear
combinations of the LECs of the Lagrangian, which are degenerate within the irreps of the lattice
symmetry group. As commented in Ref. [6], there are no relations between the SO(4)-violations in
the pion masses and the SO(4)-violations in the axial current decay constants, due to the contribu-
tions from the O(p2a2) source operators.

The terms in Gasser-Leutwyler Lagrangian given in Eq. (2.3) contribute to the decay constants
through wavefunction renormalization and the current. The wavefunction renormalization correc-
tion of the Gasser-Leutwyler terms can be calculated from the self-energy [2]. Collecting all the
NLO analytic corrections to the decay constants, we find

δ f anal
P+

t
=

64
f 2 L4µ(mu +md +ms)+

8
f 2 L5µ(mx +my)+a2Ft . (3.9)

4. Results

The results given in Eqs. (3.6), (3.8) and (3.9) are the results in the 4+4+4 theory. In order to
formulate the results in the 1+1+1 theory (rooted staggered chiral perturbation theory), we use the
replica method [7, 8, 9]. Applying the replica method to Eqs. (3.6), (3.8) and (3.9), we find

δ fP+
F
= δ f con

P+
F

+δ f disc
P+

F
, (4.1)

δ f anal
P+

t
=

16
f 2 L4µ(mu +md +ms)+

8
f 2 L5µ(mx +my)+a2Ft . (4.2)

where

δ f con
P+

F
≡− 1

32 ∑
Q,B

gB l(QB), (4.3)

δ f disc
P+

F
≡−2π

2
∫ d4q

(2π)4

(
DI

xx +DI
yy−2DI

xy

+4DV
xx +4DV

yy−2Θ
V FDV

xy +4DA
xx +4DA

yy−2Θ
AFDA

xy

)
. (4.4)
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Table 1: The coefficient ΘBF defined in Eq. (4.6) is in row B and column F .

B\F V A T P I
V −2 2 0 −4 4
A 2 −2 0 −4 4
T 0 0 −2 6 6
P −1 −1 1 1 1
I 1 1 1 1 1

Here we performed the summation over a within each taste SO(4) irrep for Eqs. (3.6) and (3.8), B
and F represent the taste SO(4)T irreps,

B,F ∈ {I,V,T,A,P}, (4.5)

t ∈ F and

Θ
BF ≡ ∑

a∈B
θ

at , gB ≡ ∑
a∈B

1. (4.6)

The coefficients ΘBF are given in Table 1. The superscripts con and disc in δ f con
P+

F
and δ f disc

P+
F

represent connected and disconnected quark-flow contributions, respectively [1].

First, we consider partially quenched results for 1+1+1 and 2+1 flavor cases in SU(3) SChPT.
The connected contributions to the decay constants in the partially quenched 1+1+1 flavor case are
the same as the Eq. (4.3). The disconnected contributions for the partially quenched 1+1+1 flavor
case are obtained by performing the integrals in Eq. (4.4) keeping all quark masses distinct,

δ f disc
P+

F ,mx 6=my
= ∑

Z

[
1
6

{
DUDS

Xπ0η ,X(ZI)l(ZI)+DUDS
Y π0η ,Y (ZI)l(ZI)−2RUDS

XY π0η
(ZI)l(ZI)

}
+

1
4

a2
δ
′
V

{
2DUDS

Xπ0ηη ′,X(ZV )l(ZV )+2DUDS
Y π0ηη ′,Y (ZV )l(ZV )−Θ

V FRUDS
XY π0ηη ′(ZV )l(ZV )

}
+(V → A)

]
+

1
6

{
RUDS

Xπ0η
(XI)l̃(XI)+RUDS

Y π0η
(YI)l̃(YI)

}
+

1
2

a2
δ
′
V

{
RUDS

Xπ0ηη ′(XV )l̃(XV )+RUDS
Y π0ηη ′(YV )l̃(YV )

}
+(V → A). (4.7)

For mx = my, we find

δ f disc
P+

F ,mx=my
=

1
4

a2
δ
′
V (4−Θ

V F)

[
RUDS

Xπ0ηη ′(XV )l̃(XV )+∑
Z

DUDS
Xπ0ηη ′,X(ZV )l(ZV )

]
+(V → A). (4.8)

For the 2+1 flavor case, the connected contributions are obtained by setting mu = md in
Eq. (4.3), and the disconnected contributions are obtained by setting mu = md and performing

5
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the integrals in Eq. (4.4). For mx 6= my, we find

δ f disc
P+

F ,mx 6=my
= ∑

Z

[
1
6

{
DπS

Xη ,X(ZI)l(ZI)+DπS
Y η ,Y (ZI)l(ZI)−2RπS

XY η(ZI)l(ZI)
}

+
1
4

a2
δ
′
V

{
2DπS

Xηη ′,X(ZV )l(ZV )+2DπS
Y ηη ′,Y (ZV )l(ZV )−Θ

V FRπS
XY ηη ′(ZV )l(ZV )

}
+(V → A)

]
+

1
6

{
RπS

Xη(XI)l̃(XI)+RπS
Y η(YI)l̃(YI)

}
+

1
2

a2
δ
′
V

{
RπS

Xηη ′(XV )l̃(XV )+RπS
Y ηη ′(YV )l̃(YV )

}
+(V → A). (4.9)

For mx = my, we find

δ f disc
P+

F ,mx=my
=

1
4

a2
δV (4−Θ

V F)

[
RπS

Xηη ′(XV )l̃(XV )+∑
Z

DπS
Xηη ′,X(ZV )l(ZV )

]
+(V → A). (4.10)

Next, we consider the partially quenched results for the 1+1+1 flavor case in SU(2) SChPT.
The connected contributions to the decay constants are obtained by dropping terms correspond-
ing to strange sea quark loops from Eq. (4.3). The disconnected contributions are obtained from
Eqs. (4.7), (4.8) and (4.4), by taking the SU(2) limit treating x and y as light quarks (mx,my,mu,md�
ms),

δ f disc
P+

F ,mx 6=my
= ∑

Z

[
1
4

{
DUD

Xπ0,X(ZI)l(ZI)+DUD
Y π0,Y (ZI)l(ZI)−2RUD

XY π0(ZI)l(ZI)
}

+
1
4

a2
δ
′
V

{
2DUD

Xπ0η ,X(ZV )l(ZV )+2DUD
Y π0η ,Y (ZV )l(ZV )−Θ

V FRUD
XY π0η

(ZV )l(ZV )
}
+(V → A)

]

+
1
4

{
RUD

Xπ0(XI)l̃(XI)+RUD
Y π0(YI)l̃(YI)

}
+

1
2

a2
δ
′
V

{
RUD

Xπ0η
(XV )l̃(XV )+RUD

Y π0η
(YV )l̃(YV )

}
+(V → A), (4.11)

and

δ f disc
P+

F ,mx=my
=

1
4

a2
δ
′
V (4−Θ

V F)

[
RUD

Xπ0η
(XV )l̃(XV )+∑

Z
DUD

Xπ0η ,X(ZV )l(ZV )

]
+(V → A). (4.12)

For the 2+1 flavor case in SU(2) SChPT, the connected contributions are obtained by setting
mu = md for the 1+1+1 case, and the disconnected contributions are obtained by setting mu = md

in Eqs. (4.7) and (4.8),

δ f disc
PF ,mx 6=my

= ∑
Z

[
− 1

2
Rπ

XY (ZI)l(ZI)

+
1
4

a2
δ
′
V

{
2Dπ

Xη ,X(ZV )l(ZV )+2Dπ
Y η ,Y (ZV )l(ZV )−Θ

V FRπ
XY η(ZV )l(ZV )

}
+(V → A)

]

+
1
4

{
l(XI)+(πI−XI)l̃(XI)+ l(YI)+(πI−YI)l̃(YI)

}
+

1
2

a2
δ
′
V

{
Rπ

Xη(XV )l̃(XV )+Rπ
Y η(YV )l̃(YV )

}
+(V → A), (4.13)
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and

δ f disc
PF ,mx=my

=
1
4

a2
δ
′
V (4−Θ

V F)

[
Rπ

Xη(XV )l̃(XV )+∑
Z

Dπ
Xη ,X(ZV )l(ZV )

]
+(V → A). (4.14)

5. Conclusion

In Eqs. (4.7) – (4.10), we present the NLO corrections to the pion and kaon decay constants for
the partially quenched case calculated in the SU(3) SChPT; in Eqs. (4.11) – (4.14), we present the
NLO corrections to the pion and kaon decay constants for the partially quenched case calculated
in the SU(2) SChPT. As one can see in Eqs. (4.4) and (4.2), the only differences between taste
Goldstone and taste non-Goldstone cases are the ΘBF factors multiplying DA,V

xy and the generalized
constants Ft in the analytic contribution. ΘBF originates from the trace of taste generators and
affects only the flavor-charged disconnected propagator, DA,V

xy . Ft are degenerate within the lattice
symmetry group, and there are no relations between the SO(4)-violations in the pion masses and
the SO(4)-violations in the axial current decay constants. Using these results, it is possible to
improve determinations of the decay constants, quark masses and the Gasser-Leutwyler constants
by analyzing lattice data from taste non-Goldstone channels.
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