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We present a study of the pseudoscalar propagator in the mixed chiral regime with valence quark
masses in the ε−regime and sea quark masses in the p−regime. We first show the NNLO pre-
diction of this observable in the chiral expansion. In sectors of fixed topology, the correlator has
a pole in 1/m2

v that can be matched to the topological zero-mode contributions to the correlator.
We compute the residue of this pole in a N f = 2 mixed-action simulation and compare the results
with the prediction in Chiral Perturbation Theory (ChPT).
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N f = 2 chiral dynamics in the mixed chiral regime Grégory Vulvert

1. Introduction

Lattice QCD allows to extract physical results from unphysical conditions such as finite vol-
ume or unphysical quark masses. In particular the up and down quark masses are typically heavier
in lattice simulations that in nature. Nevertheless chiral extrapolations allow to extract physical
results. A more extreme generalization is the partially-quenched setup where quark masses are
different in the valence and sea sectors.

It is also possible to use different discretizations in the valence and sea sectors: these are
the mixed-action formulations [1, 2]. One such setup is to consider overlap valence quarks on
improved-Wilson sea, so that an exact valence quark chiral symmetry can be preserved at a moder-
ate cost. This symmetry can be very useful to deal with renormalization of four-fermion operators
or to access other kinematical regimes such as the ε−regime.

In this work we present the result for the pseudoscalar propagator at NNLO in the mixed-
regime of ChPT where some quarks are in the ε−regime and some in the p−regime [3, 4]. The
same computation was done with all quarks in the ε−regime in [5]. When valence quarks are in the
ε-regime, there are exact poles in 1/m2

v when the averages are considered in fixed topological sec-
tors. The residue of these poles can on the one hand be computed in ChPT in terms of low-energy
couplings, and on the other computed on the lattice from the wave-functions of the topological
zero-modes. The latter being potentially more efficient than methods requiring the computation of
the full correlation function [5].

We have computed these observables in an exploratory mixed action simulation with valence
overlap fermions on a sea of N f non-perturbatively O(a)−improved Wilson fermions (generated
within the CLS common effort 1). We comment on the comparison of the numerical results and the
expectation from ChPT.

2. Topological zero-modes wave functions

Writing the spectral decomposition of the quark propagator

D−1
xy = ∑

i,
zero−modes

vi(x)v
†
i (y)

mV
+ ∑

i,
non zero−modes

vi(x)v
†
i (y)

(λi +m)V
, (2.1)

it can be shown that a two-point function, computed at fixed topology ν (indicated by 〈· · ·〉ν )
contains a pole in m2

v due to exact zero-modes. Its residue is given by:

lim
mv→0

(mvV )2Cab
ν (x) = Tr

[
T aT b

]
Aν(x)+Tr [T a]Tr [T b] ˜Aν(x) (2.2)

where

Aν(x− y) =

〈
∑
i, j

v†
j(x)vi(x)v

†
i (y)v j(y)

〉
ν

, ˜Aν(x− y) =−
〈

∑
i

v†
i (x)vi(x)∑

j
v†

j(y)v j(y)

〉
ν

. (2.3)

The sums run over the set of |ν | zero modes vi of the Dirac operator, Dvi = 0, which have definite

chirality, and are assumed to be normalized so that
∫

dx v†
i (x)vi(x) =V . The left side of eq. (2.3)

1https://twiki.cern.ch/twiki/bin/view/CLS/WebHome.
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Figure 1: Illustration of the two types of quark lines contractions. On the left, the connected contraction,
corresponding to the amplitude A . On the right the disconnected one, corresponding to the amplitude ˜A .

corresponds to a “connected” contraction of the quark lines whereas the right part corresponds to
a “disconnected” one. The figure (1) illustrates these features. It is more efficient to compute the
residues themselves than the full all-to-all propagator, so it makes sense to use these observables in
the matching to ChPT.

3. Pseudoscalar correlator in ChPT in the mixed regime

We consider QCD with Nv valence quarks of mass mv and Ns sea quarks of mass ms. The
two-point function of the pseudoscalar density that we want to compute is defined by:

Tr [T aT b]Cab
ν (t) =

∫
d~x
〈

Pa(x)Pb(0)
〉

ν

, Pa(x)≡ ψ̄vT aiγ5ψv, (3.1)

where T a, a = 1, . . . , N2
v −1 is a traceless generator of SU(Nv) and T 0 = 1v. ChPT can predict the

behaviour of the pseudoscalar correlator in finite volume V = L3T and as a function of the quark
masses and of a finite number of low-energy couplings.

In the mixed regime we consider, the valence quarks are in the ε−regime and the sea quarks
in the p−regime:

mvΣV . 1 and msΣV � 1. (3.2)

The power counting is thus the following:

p2 ∼ L−2 ∼ ms ∼O(ε2) and mv ∼ O(ε4). (3.3)

In the ε−regime, the only coupling appearing at NNLO is F . However, in the mixed regime, the
higher order couplings L4, . . . ,L8 contribute because of the heavier sea quarks in the p−regime. The
sea quarks therefore behave as decoupling particles: we expect that the correlator (3.1) has the same
behavior as the one in the quenched theory with ε−regime quarks, but with effective low-energy
couplings which are well-defined functions of those of the N f = Ns theory. Indeed this expectation
is satisfied. We refer to [3, 4] for more details on the Feynman rules in the mixed-regime.

More concretely, we consider the volume average of the Euclidean time derivative of the
residues of the correlators:

lim
mv→0

(mvV )2 d
dt

∫
d3~x Caa

ν (x) =
1
2

A′ν(t),

lim
mv→0

(mvV )2 d
dt

∫
d3~x C00

ν (x) = NvA′ν(t)+N2
v Ã′ν(t).

The spectral representation of (2.2) and the definitions Aν(t) =
∫

d~xAν(x) and ˜Aν(t) =
∫

d~x ˜Aν(x)

imply that a large t: A ′
ν(t) = A′ν(t) and ˜A ′

ν(t) = Ã′ν(t).
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We have computed these quantities at NNLO for any Nv and Ns, but we will focus here on the
partially-quenched case (Nv = 0), which is the relevant one for the numerical study of this work.

4. ChPT predictions in the partially-quenched theory

We use the replica method [6] : the perturbative modes give contributions that are finite in the
limit Nv→ 0, while the contribution of the non-perturbative modes involve zero-mode integrals on
the U(Nv|Nv) supergroup. We checked explicitly that the results obtained are consistent with the
ones obtained directly from the supersymmetric method [7].

We obtain the following structure for the correlator:

Caa
q (x) = Cq +α

(1)
q Ḡ(x,0)+α

(2)
q F̄(x)+β

(1)
q
[
Ḡ(x,0)

]2
+β

(2)
q [F̄ (x)]2 +β

(4)
q Ḡ(x,0)F̄ (x)

+
∫

d4y
[
γ
(1)
q Ḡ(x− y,0)Ḡ(y,0)+ γ

(2)
q Ḡ(x− y,0) F̄ (y)+ γ

(3)
q F̄ (x− y) F̄ (y)

]
(4.1)

+ β
(3)
q
[
Ḡ
(
x,M2

ss/2
)]2

+ εqδ
(4)(x),

with the following definition of the propagators:

G
(
x,M2) =

1
V ∑

n∈Z4

eip·x

p2 +M2 , Ḡ(x) =
1
V ∑

n∈Z4

(
1−δ

(4)
n,0

) eip·x

p2 , (4.2)

F̄ (x) =
1
V ∑

n∈Z4

(
1−δ

(4)
n,0

) eip·x

p4 , p = 2π

(
n0

T
,
~n
L

)
. (4.3)

Except for the first term of the third line, the result has the same functional form as the fully-
quenched result in the ε−regime [5]. However the coefficients are different: they are now functions
of the low-energy couplings of the N f = Ns theory and of the quark masses, as expected. In partic-
ular, the singlet couplings m2

0 and α appearing explicitly in the quenched case do not show up in
this case since the singlet is integrated out in the partially-quenched theory. However, both results
match provided the following identifications are used:

F2
eff = F2

{
1− Ns

F2

[
G
(
0,M2

ss/2
)
−8L4M2

ss
]}

(4.4)

αeff

2Nc
=

1
Ns

{
1− 1

F2

[
NsG

(
0,M2

ss/2
)
−8L5M2

ss
]}

(4.5)

m2
0,eff

2Nc
=

M2
ss

Ns

{
1− 1

F2

[
N2

s −1
Ns

G
(
0,M2

ss
)
−16M2

ss (NsL6 +NsL7 +L8)

]}
(4.6)

In [5], a large−Nc expansion was combined with the chiral expansion so that 1/Nc ∼ O(ε2),
and the scaling of the singlet couplings was chosen to be m2

0/Nc ∼M2
ssO(ε4) and α/Nc ∼ O(ε2).

We do not get the same power counting since eqs. (4.5–4.6) imply that m2
0,eff/Nc ∼ O(ε2) and

αeff/Nc ∼ O(1). To achieve the same power counting we would need to assume 1/Ns ∼ O(ε2).
Under this assumption, the present results precisely match with the fully-quenched ones of [5], as
expected.

A useful quantity to match lattice QCD results is Dν so that

1
L2 A′ν(t)≡ Dνz+Cνz3 +O(z5), z = τ− 1

2
and τ =

t
T
, (4.7)
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and similarly for D̃ν . The study of the quenched case [5] showed that Dν can be robustly extracted
from a fit of this form to the temporal dependance of the time derivative of the correlators. The
ChPT prediction for Dν is:

Dν =
2|ν |

(FeffL)
2

{
|ν |+ αeff

2Nc
+

ρ

(FeffL)
2

[
−β1ρ

−3/2 +

(
5

N2
s
+

8|ν |
Ns

+3+2ν
2−2〈ν2〉eff

)
ζ2

+

(
1

N2
s
+

2|ν |
Ns

+
1
2

)
γ1 +2

M2
ss

Ns
T 2
(

1
Ns

+ |ν |
)
(γ2−4ζ3)+

(
M2

ss

Ns

)2

T 4 (γ3 +4ζ4)

− Ns

2
|ν |γ4

(
M2

ss/2
)]}

(4.8)

with 〈ν2〉eff =V
m2

0,effF
2

eff

4Nc
(as in the Witten-Veneziano relation). We define here ρ = T/L; and the

numerical values for β1, ζi and γi for i = 1, . . . ,4 are given in table (1).

HHH
HHHCoeff

ρ 1 2

β1 0.140461 0.083601
ζ1 1
ζ2 −1/24
ζ3 7/5760
ζ4 −31/967680
γ1 −0.057128 −0.083291
γ2 −0.001951 −0.002951
γ3 −0.000066 −0.000101
γ4 pion sea mass dependent

Table 1:
Geometry dependent coefficients.

Lattice Total # # conf. by topological sector
conf. ν = 1 ν = 2 ν = 3 ν = 4

D4 117 43 18 31 25
D5 129 40 43 23 23
D6 153 85 43 25 –

Table 2:
Data sample.

5. Numerical results

We have used Ns = 2 CLS O(a)− improved gauge configurations on which we built overlap
valence fermions in a volume of 243×48 at β = 5.3, which corresponds to a value of the lattice
spacing a = 0.0649(10) fm [8]. Equivalently, these values correspond to a lattice size L = 1.56 fm
for ρ = 2. We use three lattices D4, D5 and D6 corresponding to κ = 0.13620, 0.13625 and
0.136635 respectively.

The reader can refer to [9] where topological and spectral observables have been studied on
the same set on configurations. Thus these are already classified by topological charge and we
could therefore compute the zero-mode saturated correlators at fixed topological charge. Table (2)
summarizes the data sample.

Fig. (2) shows the coefficient Dν/|ν | as a function of time for two of our lattices and several
topological charges. This temporal dependence is very well described by the expression given in
eq. (4.7). We give some results in table (3) for the case of a linear fit of the z dependence of Dν .

5
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Lattice Fitrange ν = 1 ν = 2 ν = 3 ν = 4
D4 24−33 3.0(0.6) 8.9(0.6) 11.5(0.8) 16.6(1.6)

24−35 3.0(0.5) 8.6(0.5) 11.7(0.7) 17.5(1.3)
24−37 2.9(0.5) 8.6(0.5) 12.0(0.7) 18.5(1.2)
24−39 2.9(0.4) 8.9(0.5) 12.3(0.7) 19.5(1.1)

D5 24−33 2.1(0.9) 6.5(0.9) 11.9(1.3) 17.8(1.4)
24−35 2.7(0.7) 7.1(0.8) 13.5(1.0) 19.0(1.0)
24−37 3.1(0.6) 7.7(0.7) 14.6(0.9) 20.0(0.9)
24−39 3.3(0.6) 8.3(0.6) 15.3(0.9) 21.2(0.9)

D6 24−33 4.4(0.6) 9.8(1.0) 16.3(1.3) –
24−35 4.5(0.5) 10.0(0.9) 16.7(1.1) –
24−37 4.6(0.5) 10.5(0.8) 17.2(1.0) –
24−39 4.7(0.4) 11.1(0.7) 17.8(1.0) –

Table 3:
Dν extracted from the linear fit of A′(t)/L2 for several time intervals.

We checked the stability of the fits by varying the fitting time interval and also by including higher
order corrections (with a term in z3). In any case, the results we obtain are in full agreement.
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Figure 2: Plots of Dν/|ν | vs t for two of our lattices (left : D4 – right : D6) for several topological sectors.

Unfortunately, the convergence of the chiral expansion is bad at this value of L: for L = 2 fm
and ρ = 2, for Mss≈ 250 MeV, the NLO corrections represent 100% of the LO values as illustrated
by fig. (3). It is therefore not surprising that fits of Dν to the NNLO prediction are not good. We
expect a significantly better convergence for ρ = 1 and L ≥ 3 fm, with the sea masses we are
considering.

6. Conclusions and outlook

We have studied the pseudoscalar correlator in a mixed regime where the volume is large com-
pared to the Compton wave-length of sea-quark pions but short compared to that of the valence-
quark pions. ChPT can be adapted to this regime, and we have shown the result of a NNLO
computation of this observable. In particular we have focused on the coefficient of the 1/m2

v con-
tributions that appear when considering fixed-topological sectors. At the fundamental level these
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Figure 3: (DNLO
ν /|ν | −DLO

ν /|ν |)/(DLO
ν /|ν |) vs. L. Black and red lines are the results for Mss = 250 and

300 MeV while dashed and solid curves correspond respectively to ρ = 1 and 2.

terms can only arise from the topological zero-mode contributions to the correlator. The numerical
computation of these quantities relies therefore on the evaluation of the zero-mode wave functions,
the full propagator is not needed.

We have evaluated for the first time these quantities in a mixed action simulation with overlap
valence quarks on N f = 2 improved Wilson sea fermions, with a fine-grained but relatively small
L = 1.6 fm lattice. We have found that these observables can be extracted robustly and efficiently.
However a meaningful matching to ChPT requires significantly larger volumes L ≥ 3− 4 fm to
guarranty that the neglected higher order corrections are small.

The mixed regime considered here can be useful to extract low-energy couplings of ChPT
in a different kinematical regime with different systematics and different weight of the different
low-energy couplings (e.g. those that give contributions proportional to the valence quark mass
would be suppressed). It might also be useful to simplify other notoriously difficult problems,
such as clarifying the role of the charm quark mass in the ∆I = 1/2 rule and extracting the weak
low-energy constants relevant in K→ ππ decay.
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