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using the overlap operator. Results for pure gauge theory on both sides of deconfinement phase
transition are presented. We find that the polarization scale decreases as we increase the tem-
perature, but it remains non-zero as we cross in the deconfined phase and vanishes only when
T ≈ 1.4Tc. This is caused by the presence of near-zero modes which, we find, are chirally polar-
ized.
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1. Introduction

Banks-Casher relation connects the low-lying spectrum of the Dirac operator to the sponta-
neous symmetry breaking in QCD [1]. This relationship is rather generic and a more detailed
understanding of the mechanism responsible for the chiral symmetry breaking is thought to be en-
coded in the chiral properties of the low lying eigenmodes. If we separate the chiral components
of the Dirac eigenmode Dψ = λψ ,

ψR =
1
2
(1+ γ5)ψ and ψL =

1
2
(1− γ5)ψ , (1.1)

the relative magnitudes of these components at every lattice point, i.e., ‖ψR,L(x)‖, carry information
about the local chirality of the mode. For the eigenmodes of the free Dirac operator we have
〈ψ |γ5|ψ〉 = 0 and, using translational symmetry for the chiral components magnitude, we can
show that ‖ψR(x)‖= ‖ψL(x)‖. We say that these modes are anti-polarized since their left and right
components have equal magnitude at every point.

In the presence of a gauge background, the chiral components of the eigenvector satisfy the
following equations [

−D2 +
1
2

σµνFS
µν

]
ψL = λ

2
ψL , FS =

1
2
(
F + F̃

)
,[

−D2 +
1
2

σµνFA
µν

]
ψR = λ

2
ψR , FA =

1
2
(
F− F̃

)
,

(1.2)

where F̃µν = 1
2 εµναβ Fαβ is the dual gauge field tensor. Note that the equations above are similar

to Schrödinger equations in four dimensions with FS,A playing the role of potential energy. For
classical solutions of the gauge field equations, the gauge field itself is polarized, i.e., the field is
either self-dual (FA = 0) or anti-self-dual (FS = 0) [2]. If the semi-classical approximation were
relevant for QCD, one would expected that this tendency for polarization will not be destroyed by
quantum fluctuations and there would be regions of the field where FA is strong and FS is weak and
other regions where the situation is reversed. The equations above then imply that this tendency
would also be reflected in the local chirality of the eigenmodes [3].

In a series of papers [3 – 6], a method to measure the effect of QCD dynamics on local chiral-
ity was proposed. Using this dynamical polarization, we found that for low-lying eigenmodes of
the Dirac operator there is a small tendency for polarization, which turns into an anti-polarization
tendency as we increase the magnitude of the eigenvalues [5, 6]. The scale where the polarization
turns into anti-polarization is the chiral polarization scale. We computed this scale on a series of
quenched ensembles and showed that it survives in the continuum limit [5, 6]. The weak polariza-
tion of the low-lying modes is similar to the polarization observed for the dual components of the
gauge field [7, 8].

The studies mentioned above were carried out for QCD at zero temperature where it is well
known that the chiral symmetry is broken. If the polarization of the low-lying eigenmodes is
indeed related to chiral symmetry breaking, we expect it to vanish when the symmetry is restored.
In this study we compute the chiral polarization scale as we increase the temperature going from
the chirally broken phase at low temperature to the chirally symmetric phase at high temperatures.
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Figure 1: Left panel: The distribution of polarization variable in P (reference) and Pu (uncorrelated) for
the lowest eigenmodes in ensemble E4 [5]. Right panel: The absolute X-distribution for the same eigen-
modes.

The plan of the paper is the following. In Section 2 we briefly review the tools used in this
investigation: dynamical polarization and chiral polarization scale. In Section 3 we discuss the
ensembles used in this study and show our results. Finally, in Section 4 we present our conclusions.

2. Dynamical polarization and chiral polarization scale

Dynamical polarization can be defined in a general context [5], but we will discuss it here in
connection with local chirality. For a given set of eigenmodes of the Dirac operator evaluated on an
ensemble of gauge configurations, each lattice point produces a pair of chiral components q1,2 =

‖ψR,L(x)‖. The probability distribution for these pairs is denoted with P(q1,q2). To measure the
polarization of a given pair, one can use polarization variable X = X(q1,q2), for example

X =
4
π

arctan
q2

q1
−1 , (2.1)

the polar angle in (q1,q2) plane rescaled to the interval [−1,1]. The probability distribution of X in
P assesses the degree of local chirality. However, this approach is kinematical since the shape of
the final histogram is determined by the choice of polarization variable X .

To gauge the polarization induced by QCD dynamics, we compare P with a similar distribu-
tion, Pu, where the correlation between the components is removed. The uncorrelated distribution
Pu(q1,q2) = P1(q1)P2(q2) is generated using the marginal distributions P1(q1) =

∫
dq2P(q1,q2)

and P2(q2) =
∫

dq1P(q1,q2). Note that due to symmetries of QCD we have P1 = P2. For example,
in the left panel of Fig. 1 we plot the histogram of one polarization variable X for both correlated
and uncorrelated distributions. Note that the correlated distribution is very similar to the uncorre-
lated one, but it is higher towards the extremal points and depressed in the middle. This is exactly
what we expect from a polarized distribution. To better gauge this tendency, we define the absolute
X-distribution using the polarization variable in which the uncorrelated distribution is constant.
This distribution will be peaked towards the edges for polarized case; for anti-polarized case the
absolute X-distribution will peak towards the middle. In the right panel of Fig. 1 we plot the ab-
solute X-distribution for the same ensemble. We see that this indeed confirms that the correlated
distribution is polarized.
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Figure 2: Left panel: Absolute X-distribution as a function of scale for the same ensemble as in Fig. 1.
Right panel: Correlation coefficient as a function of scale.

As we noted in the introduction, the low-lying modes of the Dirac operator in QCD at zero
temperature are weakly polarized [5]. In the left panel of Fig. 2 we plot the absolute X-distribution
for eigenmodes at different scales. As we increase the eigenvalue this tendency weakens and some-
where in the interval 343MeV ≤ Λ ≤ 387MeV the polarization vanishes. To define the chiral
polarization scale where the polarization vanishes, we use the correlation coefficient of chiral po-
larization [5]

CA = 2Γ−1 with Γ =
∫ 1

−1
dX |X |PA(X) , (2.2)

where PA(X) is the absolute X-distribution. Note that Γ is the probability that a pair drawn from P

is more polarized than another independently drawn from Pu. If P is the same as Pu, we have
no polarization and Γ = 1/2. The correlation coefficient is normalized to be 0 in this situation,
positive for polarized distributions and negative for anti-polarized ones. In the right panel of Fig. 2
we plot the correlation coefficient, which allows us to easily extract the chiral polarization scale for
the ensemble, ΛT = 368(15)MeV.

3. Results

To explore the connection between eigenmodes’ polarization and chiral symmetry breaking,
we measured the chiral polarization scale at different temperatures, both below and above the
deconfinement transition. We generated a set of quenched ensembles using Wilson gauge action
with β = 6.054. This value of β corresponds to a lattice spacing of a/r0 = 0.170 according to
a non-perturbative parametrization [9]. Using r0 = 0.5fm we get a = 0.085fm. To avoid issues
related to changing the cutoff, we varied the temperature by changing the temporal extent while
keeping the lattice spacing fixed. The spatial volume was kept fixed at V = (20a)3 = (1.7fm)3.
The parameters for our ensembles are presented in Table 1.

Nt 4 6 7 8 9 10 12 20
Nconf 100 100 400 400 200 200 200 100
T/Tc 2.09 1.39 1.20 1.05 0.93 0.84 0.70 0.42

Table 1: Parameters for the ensembles used in this study. The temperature is determined using the lattice
spacing and the critical temperature Tc = 277MeV [10].
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Figure 3: Polyakov loop distribution (left) and susceptibility (right) for our ensembles.

Since there is an uncertainty in scale setting of the order of 5%, the temperature is determined
in units of string tension [10] and the lattice spacing in units of r0 [9], we decided to compute the
Polyakov loop susceptibility to confirm that the transition temperature is determined correctly. In
Fig. 3 we plot the distribution of the Polyakov loop on our ensembles in the left panel and the
susceptibility in the right panel. From these figures is apparent that we have the temperature scale
determined correctly.

Pure glue theory has a Z(3) symmetry that is reflected in the distribution of the Polyakov loop,
as can be seen from the left panel of Fig. 3. In the deconfined phase this symmetry is spontaneously
broken and the spectrum of the Dirac operator is very different for configuration from different
Z(3) sectors [11]. Dynamical quarks break this symmetry explicitly and bias the theory towards
configurations with Polyakov loop in the real sector (−π/3 ≤ argP ≤ π/3). Since for the full
theory only the real sector is relevant, in this study we only use configurations in this sector.

To compute the chiral polarization scale, we bin the eigenvalues in bins of width δλ = 50MeV
and compute the average CA(λ ) for each bin. In the left panel of Fig. 4 we plot the average
CA as a function of λ for each of ensemble where CA(λ = 0) > 0; these are the ensemble with
T/Tc ≤ 1.20 where the low-lying modes are polarized. Note that, as in the zero temperature case,
at a sufficiently large λ the modes become anti-polarized. The chiral polarization scale is computed
for each ensemble using a simple linear fit for the bins that bracket the transition scale. The error
bars are determined using the jackknife method. The results are presented in the right panel of
Fig. 4. As expected, the chiral polarization scale decreases as we increase the temperature. A
bit surprising is the fact that it does not vanish at T = Tc. Before we discuss the cause for this
phenomenon, we note that if we fit to a simple ansatz, Λ(T ) = α(T −Tc)

β , using Tc, α and β as
free parameters, we find that the value of Tc extracted from this fit is very close to the real value. In
this fit we only use the data points with T < Tc.

The reason chiral polarization scale does not vanish as we cross the phase transition is con-
nected to the fact that the spectral density at the edge of the spectrum, ρ(λ = 0), does not vanish
immediately above Tc. These near-zero modes are polarized and lead to a non-vanishing chiral
polarization scale. To show this, in Fig. 5 we plot the eigenvalue and correlation coefficient for
each mode in our ensembles. Note that at low temperature ρ(0)> 0 as required by Banks-Casher
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Figure 4: Left panel: Correlation coefficient as a function of eigenmode scale. Right panel: Chiral polar-
ization scale as a function of temperature. The dashed line indicate the fit discussed in the text.

relation in a phase where chiral symmetry is spontaneously broken; these near-zero modes are
mostly polarized (CA > 0). The standard expectation is that above Tc the Dirac spectrum develops
a gap and the symmetry is restored. This is indeed consistent with what we observe for T > 1.4Tc

and the modes at the low end of the spectrum are strongly anti-polarized. However, at intermediate
temperatures, Tc < T < 1.4Tc, the situation is more complex: as remarked earlier, a small density of
near zero modes remains and these modes are polarized. The existence of near-zero modes above
deconfinement transition was observed earlier [12]. We emphasize here that these are not zero
modes, which are easy to distinguish when using overlap operator. We removed the zero-modes
from our analysis.

4. Conclusions

We computed the chiral transition scale as a function of temperature for pure gauge config-
urations. We find that the scale decreases as we approach the phase transition. If we extrapolate
from the confined phase, the polarization scale seems to vanish very near Tc. However, direct
calculations show that it vanishes for T ≈ 1.4Tc. The discrepancy is due to the presence of near-
zero modes at temperatures as high as 1.2Tc. These modes are polarized causing the polarization
scale to be non-zero. This suggests that the deconfinment temperature and the chiral restoration
scale—defined via the condition that ρ(0) = 0—differ in the pure gauge theory.

The near zero modes, which are connected to chiral symmetry breaking, are almost all (weakly)
polarized. A more precise framework for discussing the polarization properties of the Dirac eigen-
modes and their connection to chiral symmetry breaking is presented in [13].
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