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UV-gluons, the magnitude of the low-lying gluonic excitation remains to be of the order of 1GeV.
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1. Introduction

Unlike QED, quantum chromodynamics (QCD) forms a color-electric flux-tube between the
quark and the antiquark in mesonic systems, and this one-dimensional squeezing of the color-
electric field leads to a linear confinement potential in the infrared region [1]. Actually, apart from
the color-Coulomb energy around quarks, the flux-tube formation has been observed in lattice QCD
both for QQ̄ [2] and 3Q systems [3, 4, 5].

In the flux-tube picture of hadrons, which is idealized as the string picture in the infrared
region, one can expect “stringy excitations” of hadrons, as shown in Fig.1. This stringy mode
is non-quark-origin excitation, and therefore it can be regarded as a gluonic excitation. Such a
gluonic-excited state would be interpreted as hybrid hadrons (qq̄G and qqqG), which are interesting
hadrons beyond the quark-model framework [4].

Figure 1: Schematic illustration of the stringy excitation of hadrons. The flux-tube picture of hadrons is
idealized as the string picture in the infrared region, which is expected to allow “stringy excitations” of
hadrons. Since this stringy mode is non-quark-origin excitation, it can be regarded as a gluonic excitation.

In lattice QCD, from a detailed Wilson-loop analysis, the excited-state potentials and the glu-
onic excitation have been calculated both for spatially-fixed QQ̄ systems [6] and for 3Q systems
[7, 8]. For simpler QQ̄ systems, the behavior of the gluonic excitation is almost consistent with the
string excitation in infrared region, in spite of a significant difference at the small distance [6].

In the previous work, IR/UV-gluon contribution to the ground-state potential has been studied
[9, 10], and the confinement force is found to be almost unchanged even after the cut of high-
momentum gluon components above 1.5GeV [9, 10] in the Landau gauge. This means that the
confinement property is insensitive to UV gluons.

In this work, we study not only ground-state potential but also low-lying even-parity excited-
state potentials of QQ̄ systems in terms of gluon momentum component in the Coulomb gauge. By
introducing UV-cut in three-dimensional gluon-momentum space, we study the UV-gluon contri-
bution to excited-state potentials and stringy excitations.
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2. Lattice formulation

2.1 Formalism to extract excited-state potentials in lattice QCD

We present the formalism to extract the excited-state potential [7, 8] for the spatially-fixed QQ̄
system. We denote the nth eigen-state of the QCD Hamiltonian H by |n〉,

H |n〉 = Vn |n〉 . (2.1)

Here, Vn denotes nth excited-state potential, and 0th eigen-state means the ground-state. Consider
arbitrary independent QQ̄ states |φk〉(k = 0,1,2...). Generally, each QQ̄ state |φk〉 can be expressed
by a linear combination of the QQ̄ physical eigen-states:

|φk〉= ck
0 |0〉+ ck

1 |1〉+ ck
2 |2〉+ . . . . (2.2)

The Euclidean-time evolution of the QQ̄ state |φk(t)〉 is expressed with the operator e−Ht ,
which corresponds to the transfer matrix in lattice QCD. The overlap

〈
φ j(T )|φk(0)

〉
is given by the

Wilson loop W jk
T , sandwiched by initial state φk at t = 0 and final state φ j at t = T , and is expressed

in the Euclidean Heisenberg picture as

W jk
T ≡

〈
φ j(T )|φk(0)

〉
=
〈
φ j |W (T )|φk

〉
=
〈
φ j

∣∣e−HT
∣∣φk

〉
(2.3)

=
∞

∑
m=0

∞

∑
n=0

c̄ j
mck

n
〈
m
∣∣e−HT

∣∣n
〉
=

∞

∑
n=0

c̄ j
ne−VnT ck

n, (2.4)

with the complex-conjugate notation of c̄ j
n ≡ (c j

n)∗. This is a basic relation between Wilson loops
and potentials. By introducing the matrices C and ΛT such that

Cnk = ck
n, Λmn

T = e−VnT δ mn, (2.5)

this relation can be rewritten as

WT =C†ΛTC. (2.6)

In general, C is not a unitary matrix, and depends on the choice of |φk〉. Using this relation,
we extract the potentials Vn (n = 0,1,2 · · ·) from the Wilson loop WT . Consider the following
combination:

W−1
T WT+1 =

{
C†ΛTC

}−1
C†ΛT+1C =C−1diag

(
e−V0 ,e−V1 ,e−V2 , . . .

)
C. (2.7)

Then, e−Vn can be obtained as the eigen-values of the matrix W−1
T WT+1. In fact, they are the

solutions of the secular equation,

det
{

W−1
T WT+1 − t1

}
= ∏

n

(
e−Vn − t

)
= 0. (2.8)

In this way, the potentials Vn (n= 0,1,2, ...) can be obtained from the Wilson loop matrix, W−1
T WT+1.

In the practical calculation, we prepare gauge-invariant QQ̄ states |φk〉 composed by fat-links
obtained with APE smearing method [11], and calculate many Wilson loops sandwiched by various
combination of initial state |φk〉 and final state

∣∣φ j
〉

. By solving the secular equation Eq. (2.8)
within a truncated dimension, ground-state and excited-state potentials can be obtained.
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2.2 Discrete Fourier transformation and UV-cut of gluon momentum components

In this subsection, we consider the three-dimensional Fourier transformation of the link-variable
Uµ(x) ∈ SU(3) on a periodic lattice of size L4, and introduce UV-cut in three-dimensional momen-
tum space [9, 10]. For the argument on the gluon momentum, gauge fixing is generally needed.
For the comparison with continuum QCD, the suitable gauge to be taken on lattice would be the
Landau or the Coulomb gauge, where the gauge field tends to be continuous.

Here, we consider link-variables fixed in the Coulomb gauge, because spatial gauge-field fluc-
tuation is strongly suppressed. The Coulomb gauge has a global definition to minimize the “total
amount of the spatial gauge-field fluctuation”,

R ≡
∫

d3x tr{Ai(~x, t)Ai(~x, t)}=
1
2

∫
d3x Aa

i (~x, t)A
a
i (~x, t) (2.9)

The Coulomb gauge has a physical meaning that it maximally suppresses artificial fluctuation stem-
ming from gauge degrees of freedom for spatial gluons. In lattice QCD, the Coulomb gauge fixing
is expressed in terms of link-variable and is defined by the maximization of

Rlatt ≡ ∑
~x

∑
i

Re tr Ui(~x, t). (2.10)

p

p

µ

ν

U～

U～

ΛIR

ap

free
µ

µ

ΛUV

Figure 2: A schematic figure of UV-cut with ΛUV and IR-cut with ΛIR on momentum-space lattice, of which
spacing is given by ap ≡ 2π/(La). The momentum-space link-variable Ũµ(p) is replaced by the free-field
link-variable Ũ free

µ (p) = δp0 in the shaded cut regions.

Now, we perform the three-dimensional discrete Fourier transformation of the link-variable
Uµ(x) ∈ SU(3), and define the “momentum-space link-variable”:

Ũµ(~p, t)≡
1
L3 ∑

~x
Uµ(~x, t)exp(i~p ·~x). (2.11)

We introduce “UV-cut” in the momentum space. Outside the cut, Ũµ(~p, t) is replaced by 0, since
momentum-space link-variable is Ũ free

µ (p) = δp0 in the free-field case of U free
µ (x)≡ 1. (See Fig.1.)

We define “UV-cut momentum-space link-variable”:

ŨΛ
µ (~p, t)≡

{
Ũµ(~p, t) for |~p| ≤ ΛUV

0 for |~p|> ΛUV
(2.12)
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By the three-dimensional inverse Fourier transformation

U ′
µ(~x, t)≡ ∑

~p
ŨΛ

µ (~p, t)exp(−i~p ·~x), (2.13)

and SU(3) projection by maximizing

Re tr
{

UΛ
µ (~x, t)U

′†
µ (~x, t)

}
, (2.14)

we obtain “UV-cut (coordinate-space) link-variable”:

UΛ
µ (~x, t) ∈ SU(3). (2.15)

Using the UV-cut link-variable UΛ
µ (x) instead of Uµ(x), we calculate many Wilson loops W ik

T sand-
wiched by various combination of initial state |φk〉 and final state

∣∣φ j
〉

Note here that the UV-cut
should be introduced also to U4(x). Otherwise, the QCD Hamiltonian is not changed, so that the
potentials Vn are not changed at all.

3. Ground-state and excited-state QQ̄ potentials and gluonic excitation energy

In this section, we show the lattice QCD results of the ground-state/excited-state potentials
and gluonic excitation energy in QQ̄ systems with or without UV-cut. Our numerical simulation is
performed with isotropic plaquette gauge action with β = 6.0 at the quenched level. The lattice size
is 164, and the periodic boundary condition is imposed. This lattice QCD condition corresponds
to the (coordinate-space) lattice spacing a ' 0.104fm, and the momentum-space lattice spacing
ap ≡ 2π/(La)' 0.74GeV. We use 100 gauge configurations, and average all the parallel-translated
Wilson loops in each configuration.

Figure 3: Ground-sate and even-parity excited-state potentials in QQ̄ systems with or without UV-cut plotted
against the interquark distance R. The left panel shows the result without UV-cut. The middle and right
panels show the results with the UV-cut of ΛUV = 3ap ' 2.2GeV and ΛUV = 2ap ' 1.5GeV, respectively.
The circle symbol denotes the ground-state potential. The square and the triangle symbols denote the even-
parity excited-state potentials.

For simplicity, we only consider even-parity exited-state potentials in this paper. We prepare
the QQ̄ state |φk〉(k = 0,1,2,3) composed by the “fat-links” obtained by the APE smearing method
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[11] with the smearing parameter α = 2.3 and the iteration number of Nsmr = 0,8,16,24. Note that
only even-parity components can be obtained by this parity-invariant procedure.

3.1 Ground-state and excited-state QQ̄ potentials with UV cut

Figure 3 shows ground-state and excited-state potentials in QQ̄ systems with or without UV-
cut of gluon fields. In the original no UV-cut case, the IR slopes of ground-state and excited-state
potentials are almost the same, as was indicated by the previous lattice studies [6]. This means the
same confinement force in the infrared region.

By the cut of UV-gluon above ΛUV = 3ap ' 2.2GeV, the short-distance Coulomb part pro-
portional to 1/r reduces in ground-state potential. In the case of ΛUV = 2ap ' 1.5GeV, the short-
distance Coulomb part disappears in the ground-state potential. These tendencies are consistent
with the previous studies [9, 10].

On the other hand, the shape of the excited-state potential is largely changed by the UV-cut of
gluon fields for ΛUV = 1.5, 2.2GeV, while the ground-state potential is not so changed except for
the short distance. As a caution, the physical size of our lattice is rather small, and the true IR slope
of the excited-state is expected to be unchanged, because no change is found in the ground-state
potential, which gives a lower bound of Vn in the infrared region. In any case, the change of the
excited-potential is more significant than that of the ground-state potential by the UV-cut of gluons.

In the string picture, this result seems to be natural as mentioned below. For the stringy-excited
state as shown in Fig.1, there is a typical wavelength proportional to the interquark distance R, and
this wavelength is smaller for higher excitation mode. Then, we expect a significant influence of
the removal of UV-gluons for the stringy mode, when the UV-cut length 1/ΛUV becomes larger
than the typical wavelength of the stringy excitation. In fact, the effect of UV-gluon cut would be
larger for higher excitation. Our lattice QCD results seem to be qualitatively consistent with this
tendency.

3.2 Gluonic excitation energy with UV cut

The gluonic excitation energy defined by the difference, Vn −V0, is shown in Fig.4. Roughly,
even after the removal of UV-gluons, the magnitude of gluonic excitation is approximately un-
changed, and the low-lying gluonic excitation remains to be of the order of 1GeV.

Figure 4: The gluonic excitation energy defined by the difference between the ground-state and the excited-
state QQ̄ potentials, ∆En =Vn −V0. The left panel shows no UV-cut case. The middle and right panels show
the results with the UV-cut of ΛUV = 3ap ' 2.2GeV and ΛUV = 2ap ' 1.5GeV, respectively.
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4. Summary and concluding remarks

In this study, we have studied ground-state and low-lying even-parity excited-state potentials
of quark-antiquark systems in terms of the gluon momentum component in the Coulomb gauge
using SU(3) quenched lattice QCD. By introducing UV-cut in the gluon momentum space, we
study the “UV-gluon sensitivity” of the potentials and the stringy excitation. Even after cutting
off high-momentum gluon component above 1.5GeV, the IR part of the ground-state potential is
almost unchanged. On the other hand, the change of excited-state potential is more significant by
the cut of UV-gluons. However, the magnitude of the low-lying gluonic excitation remains to be of
the order of 1GeV after the removal of UV-gluons.

As a next step, we will investigate the odd-parity excited-state potential, by using non-symmetric
state operators of |φ〉k. In this work, we use the Coulomb gauge fixing, however, to remove gauge
artifact completely, it would be also interesting to apply the gauge-invariant expansion in terms of
the Dirac mode [12].
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