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In the past years a good comprehension of the infrared gluon propagator has been achieved, with
a good qualitative agreement between lattice results and Dyson-Schwinger equations. However,
lattice simulations have been performed at physical volumes which are close to 20 fm but using
a large lattice spacing. The interplay between volume effects and lattice spacing effects has not
been investigated. Here we aim to fill this gap and address howthe two effects change the gluon
propagator in the infrared region. Furthermore, we provideinfinite volume extrapolations which
take into account the finite volume and finite lattice spacing.

We also report on preliminary results for the gluon propagator at finite temperature.
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The Landau gauge gluon propagator at zero and finite temperature P. J. Silva

1. Introduction and motivation

In a Quantum Field Theory, the knowlegde of all Green’s functions allowsa complete de-
scription of the theory. In QCD, propagators of the fundamental fields encode information about
non-perturbative phenomena, like confinement and dynamical chiral symmetry breaking.

Here we study the gluon propagator in Landau gauge, at both zero and finite temperature,
using lattice simulations.

2. The gluon propagator at zero temperature

In this section we study the gluon propagator using lattice simulations for various lattice vol-
umes and lattice spacings. Although there is some support for D(0)=0 [2, 3], recent large volume
lattice simulations, close to 20 fm, have claimed a finite non-vanishing gluon propagator at zero
momentum [4, 5]. In order to be able to simulate such large volumes, the reported simulations used
a large lattice spacing∼ 0.2 fm. Since there is no systematic study about the effect of such a large
lattice spacing in the propagator, our first goal is to investigate the interplay between volume effects
and lattice spacing effects. Furthermore, we also consider the extrapolation of the propagator to the
infinite volume limit.

2.1 Lattice effects

In figure 1, we show our results for the gluon propagator, renormalizedat µ = 4GeV — see
[6] for details and the lattice setup1. For comparison purposes, we also show data obtained by the
Berlin-Moscow-Adelaide collaboration [5]. Note that data in the same plot has the same lattice
spacing, while varying the lattice volume. The plots show that, in the infrared region, the gluon
propagator decreases as the lattice volume increases.

Whereas in figure 1 we compare data with the same lattice spacing, in figure 2 weplot data
with similar physical volumes. This allow us to study how the propagator changes with the different
lattice spacings, keeping a constant physical volume. We have considered 4 different volumes,
namely∼3.3,∼4.6,∼6.6, and∼8.1 fm.

The first thing to note in figure 2 is that, for momenta above∼900 MeV, the propagator is
well-defined, in the sense that the data define a unique curve. We can therefore claim that the
renormalization procedure has been able to remove lattice artifacts for the high momenta region.

Furthermore, figure 2 shows that the simulations performed with smallerβ values (i.e. larger
lattice spacings) underestimate the gluon propagator in the infrared region.Indeed, by comparing
figures 1 and 2 one can conclude that the corrections due to the finite lattice spacing seem to be
larger than the corrections due to the finite volume. Moreover, from the above observations one
can claim that the data from the Berlin-Moscow-Adelaide collaboration provide a lower bound for
the gluon propagator in the continuum.

1Simulations in this section have been performed with MILC code [1].
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Figure 1: Renormalized gluon propagator forµ = 4 GeV for all lattice simulations.

2.2 Zero momentum gluon propagator

Figure 3 shows the zero momentum gluon propagator as a function of 1/L. For each set of
D(0) values with the sameβ , one can consider the extrapolation to the infinite volume. Here we
consider the ansatz

D(0) =
c
L
+D∞(0) (2.1)

The results forD∞(0) are 8.43±0.61GeV−2 (χ2/d.o. f .= 2.6) for β = 5.7, 8.79±0.64GeV−2

(χ2/d.o. f . = 1.7) for β = 6.0, and 9.72± 0.25GeV−2 (χ2/d.o. f . = 0.1) for β = 6.2. In what
concerns the data from the Berlin-Adelaide-Moscow collaboration, the fitprovidesD∞(0) = 6.1±
1.4GeV−2 (χ2/d.o. f .= 1.3). Note that this linear extrapolation does not provide a coherent picture
of all the data sets. However, one can claim aD∞(0) in the range 6–10 GeV−2. Note, however,
that the results reported in [2, 3] do not exclude completely a vanishing gluon propagator at zero
momentum.

2.3 Extrapolation to the infinite volume limit

Having in mind the extrapolation of our results to the infinite volume limit, we consider fits of
the lattice data to the functional form

D(q2) = Z
q2+M2

1

q4+M2
2q2+M4

3

. (2.2)

Note that for Z=1, the above expression is the tree level prediction of the so-called refined
Gribov-Zwanziger action and, as shown in [7], it describes the infrared lattice gluon propagator up
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Figure 2: Comparing the renormalized gluon propagator atµ = 4 GeV for various lattice spacings and
similar physical volumes.

β Z M2
1 M2

2 M4
3 D(0)

5.7 0.821(10) 4.09(17) 0.558(36) 0.380(11) 8.84(45)
6.0 0.830(13) 4.01(16) 0.565(46) — —
6.2 0.83333(17) 4.473(21) 0.704(29) 0.3959(54) 9.42(14)

Table 1: Extrapolation to the infinite volume limit.D(0) is given in GeV−2.

to momenta∼ 1.5GeV. The extra parameter Z allows to fit the lattice data from 0 up to 4GeV —
see [6] for details. Then we combine all volumes for a givenβ and perform a linear extrapolation
in 1/L to the infinite volume of each parameter independently. The extrapolated parameters can
be seen in table 1. All extrapolations have aχ2/d.o. f . below 1.25 with the exception ofM4

3 for
β = 6.0; for this reason, no information is given about this parameter in table 1 forthe β = 6.0
case. In figure 4, we show the extrapolated propagators and compare with the largest lattice volume
available in each case.

3. The gluon propagator at finite temperature

In this section, we focus on the calculation of the gluon propagator at finite temperature. On
the lattice, finite temperature is introduced by reducing the temporal extent of the lattice, i.e. we
work with latticesL3

s ×Lt , with Lt ≪ Ls. The temperature is defined byT = 1/aLt .

At finite temperature, the Landau gauge gluon propagator is described bytwo tensor structures,
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Figure 3: Linear extrapolation ofD(0) to the infinite volume.
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Figure 4: Extrapolated propagators to the infinite volume.
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Temp. (MeV) β Ls Lt a [fm] 1/a (GeV)

121 6.0000 64 16 0.1016 1.9426
162 6.0000 64 12 0.1016 1.9426
243 6.0000 64 8 0.1016 1.9426
260 6.0347 68 8 0.09502 2.0767
265 5.8876 52 6 0.1243 1.5881
275 6.0684 72 8 0.08974 2.1989
285 5.9266 56 6 0.1154 1.7103
290 6.1009 76 8 0.08502 2.3211
305 5.9640 60 6 0.1077 1.8324
305 6.1326 80 8 0.08077 2.4432
324 6.0000 64 6 0.1016 1.9426
486 6.0000 64 4 0.1016 1.9426

Table 2: Lattice setup used for the computation of the gluon propagator at finite temperature.

Dab
µν(q) = δ ab

(

PT
µνDT(q4,~q)+PL

µνDL(q4,~q)

)

(3.1)

where the transverse and longitudinal projectors are defined by

PT
µν = (1−δµ4)(1−δν4)

(

δµν −
qµqν

~q2

)

, PL
µν =

(

δµν −
qµqν

q2

)

−PT
µν ; (3.2)

the transverseDT and longitudinalDL propagators are given by

DT(q) =
1

2V(N2
c −1)

(

〈Aa
i (q)A

a
i (−q)〉−

q2
4

~q2〈A
a
4(q)A

a
4(−q)〉

)

(3.3)

DL(q) =
1

V(N2
c −1)

(

1+
q2

4

~q2〈A
a
4(q)A

a
4(−q)〉

)

(3.4)

In table 3 we show the temperatures we have simulated up to now2, for a fixed physical spatial
volume∼ (6.5fm)3. For the determination of the lattice spacing we fit the string tension data in
[10], using the functional form used in [11], in order to have a functiona(β ).

We resume the results obtained up to date in the 3d plots shown in figure 5. We see that
the transverse propagator, in the infrared region, decreases with the temperature. Moreover, this
component exhibits a turnover for small momenta. The longitudinal component increases for tem-
peratures belowTc ∼ 270MeV. Then the data exhibits a discontinuity aroundTc, and the propagator
decreases forT > Tc.

2Simulations in this section have been performed with the help of Chroma library [8]; the FFT transforms have been
done with the PFFT library [9].
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Figure 5: Longitudinal (left) and transverse (right) gluon propagator as a function of momentum and tem-
perature for a∼ (6.5fm)3 spatial lattice volume.
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