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To clarify the relation between chiral symmetry breaking and color confinement, we investigate
the Polyakov loop in terms of the Dirac eigenmodes in SU(3) lattice QCD. We analyze the low-
lying (IR) and UV Dirac-mode contribution to the Polyakov loop, respectively, using the Dirac-
mode expansion method. In the confined phase, the Polyakov loop (Lp) remains almost zero
and Z3 center symmetry is thus unbroken, even after removing low-lying Dirac-modes, which
are responsible to chiral symmetry breaking. In the confined phase, the Polyakov loop (Lp) also
remains almost zero by UV Dirac-modes cut. In addition to the confined phase, we analyze the
Polyakov loop in the deconfined phase and its temperature dependence. The behavior of the
Polyakov loop (Lp) is found to be almost unchanged by the cut of low-lying or UV Dirac-modes
in both confined and deconfined phases.
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1. Introduction

Nowadays, quantum chromodynamics (QCD) is established as the fundamental theory of the
strong interaction. However, the non-perturbative properties of QCD are not fully understood, es-
pecially, on color confinement and chiral symmetry breaking. It is interesting issue to investigate
the correspondence between these non-perturbative phenomena [, D, B, B, B, B, @, B]. The lattice
QCD calculations show the simultaneous chiral and deconfined phase transitions at finite tempera-
ture [B], which suggests a close relation between confinement and chiral symmetry breaking.

As for chiral symmetry breaking, the chiral condensate (gg) is directly connected to the Dirac
operator in QCD. The chiral condensate is proportional to the Dirac zero-mode density as

(dg) = — lim lim 7(p(0)), (L1)

with the Dirac spectral density p (A ), which is known as the Banks-Casher relation [[]. The Dirac
zero-modes are also related to the topological charge via the Atiyah-Singer index theorem [[].

Therefore, it is interesting to investigate color confinement in terms of the Dirac-operator prop-
erties. Using Gattringer’s formula [B], the Polyakov loop was analyzed by the Dirac spectrum sum
with twisted boundary condition on lattice [@, B, B]. In our previous studies [[, B], we developed
the Dirac-mode expansion method for the link-variable, and analyzed the role of the Dirac mode
to the Wilson loop and the interquark potential. As for the hadron spectra, it is reported that the
hadrons still exist as the bound state even without chiral symmetry breaking by removing low-lying
Dirac-modes [[2, I3].

In this paper, based on the Dirac-mode expansion method [[, B], we investigate the role of the
Dirac mode to the Polyakov loop in both confined and deconfined phases at finite temperature in
SU(3) lattice QCD. In Sec.2, we briefly review the formalism of the Dirac-mode expansion method
in lattice QCD. In Sec.3, we show the lattice QCD results. Section 4 is devoted for the summary.

2. Formalism

In this section, we briefly review the Dirac-mode expansion method in lattice QCD [[3, B], and
formulation of the Dirac-mode projected Polyakov loop.

2.1 Dirac-mode expansion in lattice QCD

In lattice QCD, the Dirac operator D = 7y, Dy, is expressed as

Dx7)7

1 4
% Z Yu [Uli (x)6x+,a.,y - U*u (x)ax—ﬂ,y] ) (2~1)
u=1

using the link-variable Uy, (x) € SU(N,) and the lattice spacing a. Here, we use the convenient
notation of U_, (x) = UJ (x— 1), and i denotes for the unit vector on lattice in p-direction. In this
paper, we adopt hermitian y-matrices, i.e., }/;S = Yu., in the Euclidean space-time. Thus, the Dirac
operator I is anti-hermitian, and the Dirac eigenvalues are pure imaginary number. We introduce
the normalized Dirac eigenstate |n) which satisfies

Dln) = idy|n), (2.2)
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with the eigenvalue A, € R. The Dirac eigenfunction y, (x) defined by
W (x) = (x[n) (2.3)

satisfies Dy, = id, y,,.
We consider the operator formalism in lattice QCD [, B]. The link-variable operator Uu is
defined by the matrix element

x| Ouly) = Uu(x) 84 y- (2.4)

The Dirac-mode matrix element (n|Uy|m) is expressed as

(n|Oulm) = Y (nle) (x|Oplx + f1) (x+ 2 |m)

X

= LV (Uu ()Yl + 1), (2.5)
X
using the link-variable Uy (x) and the Dirac eigenfunction v, (x).
Using the completeness relation ¥, |n) (n| = 1, any operator O can be expanded in terms of the
Dirac-mode basis |n) as

) =YY" |n)(n|Olm)(ml, (2.6)

which is the mathematical basis of the Dirac-mode expansion [, B].
Based on the expansion in Eq.(Z8), we introduce the Dirac-mode projection operator P as

P= Z |n)(n 2.7)

with the Dirac eigenstate |n), and arbitrary set of eigenmode subspace 7. For example, the IR and
the UV Dirac-mode cut are given by

Pr = Z |n)(n|, Byy = Z |n)(n|, (2.8)
‘ln ‘ zAIR ‘An ‘ SAUV
respectively, with the IR/UV cutoff parameter, Ajg and Ayy. We define the Dirac-mode projected
link-variable operator as

] EI3U P=Y Y |n)(nUum)(ml, (2.9)
nes/ meof
with the projection operator P. Using the projected link-variable UZ, we can analyze the individual
contribution of each Dirac eigenmode to the various quantities, such as the Wilson loop [, B].

2.2 Polyakov loop operator and Dirac-mode projection

Next, we formulate the Dirac-mode projection of the Polyakov loop. Hereafter, we consider
the periodic SU(3) lattice of the space-time volume V = L3 x N, with lattice spacing a. In lattice
QCD operator formalism, the Polyakov-loop operator is defined by

N
HU4 = —UN’ (2.10)

;o1
=3y
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with the temporal link-variable operator Us. Taking the functional trace “Tr”, we obtain the stan-
dard Polyakov loop (Lp) as

R 1 N; R 1 N .
Trlp = —Tr {[[0s} = ) (& e|[[Oul%1)
SUS = v Xt i=1

1 N
= trz X, t|U4|%,t +a) (X,t +a|Uy|%,t +2a) - - (X,t + (N, — 1)a|Us|%,1)

£1%
= Wtr;w(i’,t)w()_é,t%—a) Ug(X,t+ (N, — 1)a) = (Lp), (2.11)
where “tr”” denotes the trace over SU(3) color index.
Using the projection operator 2, we define the Dirac-mode projected Polyakov loop (LX) as
(D) = —Tr {H 0ry = Tr {PU,PULP--- POLP)
1 N A A
= —tr Z <n1\U4\n2)(n2]U4\n3>--~(nN[]U4]n1>. (2.12)
£1%
ny,ny,...nN, €9
In particular, we consider the IR/UV Dirac-mode projected-Polyakov loop as
1 N A
<LP>IR = 3—tr Z <I’l1 ‘U4‘I’l2> R <an ‘U4‘I’l1>, (2.13)
Vv
A [> AR
1 N N
<LP>UV = —ftr Z <n1‘U4|I’l2>”~<nNt’U4‘I’l1>, (2.14)
k1%
|20 | <Auv

with the IR/UV eigenvalue cutoff, Ajgr and Ayy.

3. Lattice QCD calculation

In this section, we study the Polyakov loop in terms of the Dirac-mode in SU(3) lattice QCD at
the quenched level. We use the LAPACK package for the full diagonalization of the Dirac operator
[I4]. We use the Kogut-Susskind (KS) formalism for reduction of the computational costs [[, B].

3.1 The confined phase

First, we analyze the Polyakov loop properties in the confined phase. Here, we use 6* lattice
with B = 5.6, which corresponds to lattice spacing a ~ 0.25fm [@, B]. The total number of KS
Dirac-modes is L* x N, x 3 = 3888. Figure [ shows the lattice QCD result for the Dirac spectral
density p(A) and IR/UV-cut Dirac spectral density,

PR(A) =p(A)0(|A]| —Ar), puv(A)=p(A)0(Auy —|[A]), 3.1

with Ag = 0.5~ and Ayy = 2.0a!. Both mode-cuts correspond to removing about 400 modes
from full eigenmodes.

We show in Figs.B(a)-(c) the scatter plot of the original Polyakov loop (Lp), (Lp)r for low-
lying Dirac-mode cut with Alr = 0.5a~!, and (Lp)yv for UV Dirac-mode cut with Ayy = 2.0a~",
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Figure 1: The Dirac spectral density in SU(3) lattice QCD on 6% at B=5.6,1i.e., a ~0.25fm. (a) The original
spectral density p(A). (b) pr(A) for IR-cut with Alr = 0.5a~". (c) pyv(A) for UV-cut with Ayy = 2.0a"!.
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Figure 2: The scatter plot of the Polyakov loop in the confined phase in SU(3) lattice QCD on 6* at $=5.6,
i.e., a~025fmand T = 1/(N;a) ~ 0.13GeV. (a) The original Polyakov loop (Lp). (b) (Lp)r for low-lying
Dirac-mode cut with Alg = 0.5a~". (c) (Lp)yv for UV Dirac-mode cut with Ayy = 2.0a~".

respectively. As shown in Fig.D(a), the Polyakov loop satisfies (Lp) ~ 0, which indicates the con-
fined phase.

By removing low-lying Dirac-modes, chiral symmetry breaking is effectively restored [B, [,
[, [3]. Actually, this IR Dirac-mode cut of Ajg = 0.5a ' ~ 0.4GeV corresponds to about 98%
reduction of the quark condensate around the physical region m, ~ 5MeV [B]. However, as shown
in Fig.2(b), the Polyakov loop (Lp)1r remains almost zero, which means unbroken Z3 center sym-
metry. This result indicates that the single-quark energy is still extremely large, and the system
remains in the confined phase even without chiral symmetry breaking. In the UV Dirac-mode cut,
the chiral condensate is almost unchanged, and the Polyakov loop (Lp)yyv also remains almost zero,
as shown in Fig.D(c). These results in Figs.2(b) and (c) show that the Polyakov loop is insensitive
to the IR/UV Dirac-mode cut.

3.2 The deconfined phase at high temperature

Next, we study the role of the Dirac mode in the deconfined phase at high temperature. Here,
we use 6> x 4 lattice at f=6.0. The total number of KS Dirac eigenmodes is L* x N; x 3=2592.

Figure B shows the original Polyakov loop (Lp), (Lp)r for low-lying Dirac-mode cut with
AR =0.5a7 !, and (Lp)yvy for UV Dirac-mode cut with Ayy = 2.0a7 !, respectively. These mode-
cuts correspond to removing about 200 modes from full eigenmodes. As shown in Fig.B(a), the
Polyakov loop has a non-zero expectation value (Lp) # 0, which shows the center group Z3 struc-
ture on the complex plane. This property indicates the deconfined phase.

After removing low-lying or UV Dirac-modes, as shown in Figs.B(b) and (c), the Dirac-mode
projected Polyakov loop (Lp) g /uv still shows the non-zero value and the Z; center structure, which
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Figure 3: The scatter plot of the Polyakov loop in the deconfined phase in SU(3) lattice QCD on 63 x 4
at f=6.0, i.e., @ ~0.10fm and T = 1/(N,a) ~ 0.5GeV. (a) The original Polyakov loop (Lp). (b) (Lp)ir for
low-lying Dirac-mode cut with Ajg = 0.5a7 L. (c) (Lp)yy for UV Dirac-mode cut with Ayy = 2.0a" L.
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Figure 4: The B-dependence of the Polyakov loop |(Lp)ir/uv/| in SU(3) lattice QCD on 6° x 4. (a) |(Lp)IR|
for IR Dirac-mode cut with Alr = 0.5a"! and 1.0a~!. (b) |{Lp)yy| for UV Dirac-mode cut with Ayy =
2.0a~" and 1.7a™". The original Polyakov loop |(Lp)| without cut is added.

indicates the deconfined and Z3 broken phase. In fact, in both cut cases of IR and UV Dirac modes,
no drastic change occurs on the Polyakov loop, apart from a constant normalization factor. The
Dirac-mode seems to be insensitive also for deconfinement properties of the Polyakov loop.

3.3 B-dependence of Dirac-mode projected Polyakov loop

We also investigate the f-dependence of the absolute value of the Dirac-mode projected
Polyakov loop, |(Lp)r /uv|. at fixed N; and L. Here, we use 6° x 4 lattice with § = 5.4 ~ 6.0.

Figure B (a) shows |(Lp)r| with Alr = 0.5~ ! and 1.0a~', and Fig.@ (b) shows |(Lp)yy| with
Auy =2.0a7 ! and 1.7a'. In terms of the removed number of Dirac modes, Ajg = 0.5a~ ! and
1.0a~! approximately correspond to Ayy = 2.0a~" and 1.7a™!, respectively. We have also added
the original (no Dirac-mode cut) Polyakov loop |(Lp)|, which shows the phase transition around
B =5.6~5.7. Both IR and UV Dirac-mode projected Polyakov loop [(Lp)ir /uv| show the similar
B-dependence as the original Polyakov loop |(Lp)|, apart from a constant normalization factor.

4. Summary and concluding remarks

In this paper, we have analyzed the direct relation between the Dirac eigenmodes and the
Polyakov loop in SU(3) lattice QCD calculation at the quenched level. Using the Dirac-mode
expansion method, we have carefully removed the relevant ingredient of chiral symmetry breaking
from the Polyakov loop.
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In the confined phase, we have found that the Polyakov loop remains almost zero even without
low-lying Dirac-mode. These low-lying modes are relevant for chiral symmetry breaking, as the
Banks-Casher relation indicates. However, the Polyakov loop does not show any drastic changes,
which indicates the system still remains in the confined phase. This result is consistent with the
Wilson loop analysis, which shows the area law and the linear interquark potential even after re-
moving low-lying Dirac-modes [, B]. We have also checked the UV Dirac-mode contribution to
the Polyakov loop. By removing UV Dirac modes, the Polyakov loop remains almost zero. Thus,
there seem to be no specific Dirac modes essential for the Polyakov loop in the confined phase.

In addition to the confined phase, we have also analyzed the Polyakov loop properties in the
deconfined phase at high temperature. In the deconfined phase, the Polyakov loop has a non-zero
expectation value, which distributes in Z3 direction in the complex plane. Even by removing low-
lying or UV Dirac-modes, the behavior of the Polyakov loop (Lp)r /v seems almost unchanged,
apart from a constant normalization factor.

These lattice QCD results suggest no direct connection between chiral symmetry breaking and
color confinement through the Dirac eigenmodes, which indicates that one-to-one correspondence
would not hold between them in QCD. If it is the case, the QCD phase diagram would exhibit more
richer structure by mismatch of chiral and deconfinement phase transitions.
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