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We report on our numerical, Monte Carlo simulation study of a gas of closed loops on a 3 di-
mensional lattice in the presence of a topological term which computes the linking number of the
virtual loops. The topological term converts the particles in the loop into anyons. The term is
equivalent to the Chern-Simons term for the corresponding abelian-Higgs model, in a strong cou-
pling limit. The system exhibits a phase transition as a function of the anyon mass, as this mass
becomes small, the vacuum is saturated by a so-called infinite length anyon loop configuration.
We find that the Chern-Simons term has no effect on the Wilson loop however, it contributes to
the ’t Hooft loop by exactly it’s linking number with all of the dynamical anyon loops. We find
the interesting result that both the Wilson loop and the ’t Hooft loop both exhibit a perimeter law
behaviour even though there are no massless particles in the theory.
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1. INTRODUCTION

We report on our study a 3-dimensional lattice loop gas [1, 2], with a topological interac-
tion which counts the total linking number of the loops with each other. The only interactions
they feel are a statistical, Aharonov-Bohm [3] type interaction and an infinite short range repul-
sion between particles (and antiparticles) which prohibits the particles to come close to each other.
The Aharonov-Bohm interaction causes a change of phase of the wave function when one particle
encircles another, giving a phase dependent on the coefficient of the topological term. The topo-
logical term contributes a phase eiκ to the corresponding amplitude, where κ is the coefficient of
the topological term in the action.

In [1], it was proposed that the lattice loop gas is an effective theory describing the asymptotic
strong-coupling limit of the Abelian Higgs model. This model contains fundamental scalar and
gauge particles and also vortices. In the asymptotic strong-coupling limit the fundamental particles
become infinitely massive: they decouple from the theory, leaving only vortices. The topologi-
cal interaction between lattice loops corresponds in the Abelian Higgs model to the addition of a
Chern-Simons term.

The Euclidean action is no longer real, the Chern-Simons term is an imaginary term in the ac-
tion. This is an impediment to numerical simulation of the theory using the Monte Carlo. However,
we can use the real part of the action to give us the probability distribution. Then the Chern-Simons
term is simply a bounded unimodular phase which can be integrated against the measure that is de-
fined by the real part of the action. It does give rise to the familiar sign problem.

The Chern-Simons term for the configurations that we are left with (non-intersecting closed
loops on the lattice) is simply equal to twice the total linking number of all the loops [4]. We
can see this quite easily by observing that since the Chern-Simons integrand is proportional to the
magnetic field, the integral reduces to a set of line integrals along the vortex flux lines:

SCS =
κ

4π2

∫
d3x ε

µνλ Aµ∂νAλ =
κ

2

(
∑
Ci

NL(Ci)

)
(1.1)

where NL(Ci) is exactly the linking number of vortex line Ci with all of the other vortex lines.
Summing over all the curves clearly gives twice the total linking number of all the vortex loops,
∑Ci NL(Ci) = 2NT , where NT is the total linking number of the configuration of vortex loops; i.e.,

κ

2

(
∑
Ci

NL(Ci)

)
= κNT (1.2)

2. Computing the linking number

The closed non-intersecting loops were generated on a body centered cubic (bcc) lattice of size
1003 by placing the cube roots of unity randomly on the vertices, with all points on the surface of
the lattice assigned the same value. The lattice can be thought of as filling space with (non-regular)
tetrahedra. Each cube contains six pyramids; adding the diagonal of the cubic sides in a systematic
way throughout the lattice divides each pyramid into two non-regular tetrahedra (see [1] for details).
If the change in phase of the cube roots of unity around one of the triangular faces of a tetrahedron
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is equal to ±2π , we say a length of vortex flux tube has entered or exited the tetrahedron through
that face. If the flux entered the tetrahedron it is easy to see that whatever cube root of unity is
placed on the fourth vertex of the tetrahedron, the flux must exit the tetrahedron through one of the
other faces. But then it enters another tetrahedron since the tetrahedra fill space. The loop must
close, since the boundary condition used means no surface triangle has a flux passing through it.
The loops so defined exist in the dual lattice to the initial tetrahedral lattice.

To compute the linking number of any given loop with all of the other loops, we need to
simply compute the flux that passes through the given loop, since each other loop that links with
it carries one unit of flux. The flux that passes through a loop that is defined along the links and
vertices of the original lattice is trivially calculated: we simply calculate the change of phase of the
cube roots of unity as we pass through the vertices of such a loop. Thus if we can systematically
deform the given vortex loop on the dual lattice to a loop on the original lattice, the calculation is
straightforward. The calculation of the linking number via the flux that passes through the deformed
loop also calculates the linking number of the deformed loop with the original loop, which defines
the self-linking number of the original vortex loop. We must subtract this self-linking number from
the calculation of the linking number of the deformed loop.

However, the self-linking number is in fact the ordinary linking number of the deformed loop
with the original loop. There is a simple way to compute this linking number, using knot theory
[5].

We can project the knot onto a two dimensional plane, keeping track only of the the sense
of the crossings of the segments of one loop with the other in the projection. Then a sum of the
association of ±1 to the crossings, depending on which segment of which loop is on top of the
other and its direction, gives the linking number. The important point is to choose the direction of
projection that will yield the most simplifying two dimensional projection.

Projecting along the diagonal of the lattice (the (1,1,1) direction in coordinate space) actually
yields exactly a regular triangular lattice on the projected two plane. The original loop, which
passes through the dual lattice, projects to the dual lattice of the two dimensional triangular lattice,
while the deformed loop, of course, projects directly to the links of the triangular lattice

Thus the crossings are unambiguous and occur at a small, finite number of intersection points.
It is easy to keep track of the segments of each loop, and their relative heights. This simply amounts
to a re-indexing of the data which is already stored in the computer, in a new system of coordinates
given by the triangular lattice in the two dimensional projected plane and the height along the
(1,1,1) direction.

3. Calculating in the Chern-Simons Theory

We obtain the set of equilibrium configurations by using the Boltzmann weight given by the
total length of the vortex loops. Thus the Boltzmann weight is unaffected by the Chern-Simons
term. This is a classic problem for numerical simulations; it arises in theories with fermions where
it is called the sign problem, but also in the context of topological terms which are odd under time
reversal; a fuller explanation of this is provided, for example, in [6]. The solution in the present
case is based on the following logic. The (Euclidean) Feynman path integral corresponds to the
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integral

〈O〉=
∫

Dϕ e−SE/h̄O (3.1)

over the space of field configurations, with appropriate boundary conditions, to calculate a quantum
amplitude 〈O〉. However, the actual measure on this space is not specified.

The important property that the measure used to construct the quantum field theory must sat-
isfy, is that it respect all the symmetries of the theory that one is trying to construct. We use the
full real part of the action, which provides an appropriate measure. We use the approximation for
the action, the total length of the vortex loops for the field configurations that we consider. The
full real part of the action actually has more symmetry than the theory with the Chern-Simons term
added since parity and time reversal are not symmetries of the full theory. However this does not
cause any problem since all amplitudes are calculated with the Chern-Simons term inserted.

Hence we use the full real part of the action to define the measure on the space of field con-
figurations, and in the context of the Monte-Carlo method, the set of equilibrium configurations,
say a total number N. After this, the Chern-Simons term simply gives a uni-modular phase that
can be integrated against this measure. When calculating actual matrix elements of an operator,
we must calculate the average of the operator with the phase coming from the Chern-Simons term
inserted and then divide by the partition function, again defined with the same phase inserted. This
procedure is called reweighting. Explicitly we get

〈O〉 ≈ 〈O〉N =
∑

N
i=1 O(Ci)eiSCS(Ci)

∑
N
i=1 eiSCS(Ci)

(3.2)

where Ci stands for the ith configuration. Normally, both numerator and denominator contain a
factor of 1/N; however, here it cancels between them.

3.1 Chern-Simons term

The Chern-Simons term in the functional integral gives exactly the linking number of all the
dynamical loops. We use knot theoretic techniques to compute the average of the Chern-Simons
term in the set of equilibrium configurations, for different values of the mass µ . We see that the
expectation value drops to zero remarkably quickly as the system passes through the transition at
about µ = 0.152 for decreasing µ . The graph for the expectation value of the Chern-Simons term
is given in Fig. 1 for various values of µ . This average of the Chern-Simons term serves as the
partition function when computing the expectation value of any operator. Clearly proceeding to
values of κ & 0.08 is not possible for µ . 0.15.

3.2 Wilson loop

The Wilson loop [7] is defined as the expectation value of the operator

W = e−i(q/e)
∮

Aµ dxµ

(3.3)

where e is the fundamental charge in the model and the integral in the exponent goes along a closed,
fixed rectangular path of width L and length T . For a given configuration Ci, the exponent in the
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Figure 1: (color online) The average value of the Chern-Simons term as a function of κ .

Wilson loop is equal to the linking number of the curve defining the Wilson loop and the dynamical
vortex loops in the configuration, say NWL(Ci),

W (Ci) = e−i(2πq/e)NWL(Ci). (3.4)

The calculation of the expectation value of the Wilson loop can be done by first calculating the
average value of the Wilson loop for fixed total linking number, and then performing the sum over
these average values, weighted by the number of configurations with the fixed total linking number.
Using the notation N (NT ) for the number of configurations with fixed total linking number NT ,
and Ci,NT as an index for these configurations, we have:

〈W 〉 = ∑iW (Ci)eiκNT (Ci)

∑i eiκNT (Ci)

=
∑NT N (NT )

(
1

N (NT )
∑Ci,NT

W (Ci,NT )
)

eiκNT

∑NT N (NT )eiκNT
. (3.5)

The term in parentheses in the numerator is the average value of the Wilson loop with fixed
total linking number. If this is independent of the value of the total linking number, then it comes
out of the sum, and in fact the sums in the numerator and denominator cancel, yielding

〈W 〉= 1
N (NT )

∑
Ci,NT

W (Ci,Nt ) (3.6)

which is in fact independent of κ . This is exactly what we find with our numerical simulation. In
Fig. 2 we plot the value of the Wilson loop for different values of µ as a function of κ , at a fixed
value 2πq/e = 0.18π . Evidently, the average of the Wilson loop does not depend on κ for any
value of µ for κ . 0.08. There is an apparent dependence in the graphs for small µ , as κ exceeds
the value ∼ 0.08. However, at this point, as we can see from Fig. 1 the value of the Chern-Simons
becomes very small, and we can no longer trust the numerical results.
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Figure 2: (color online) The Wilson loop for various values of the coefficient of the Chern-Simons term:
κ .

3.3 ’t Hooft loop

The ’t Hooft loop [8] corresponds to the insertion of a singular magnetic flux tube along a
contour of a fixed rectangular loop of width L and length T . The Monte Carlo method of gen-
erating the equilibrium configurations is unchanged, using as before only the real part of the full
action, with the (infinite) action of the ’t Hooft loop subtracted off and with our strong-coupling
approximation. Then the equilibrium configurations are comprised of configurations of closed vor-
tex loops appended by the ’t Hooft loop. In the presence of the Chern-Simons term, the ’t Hooft
loop simply adds κN′tHL to the action, where N′tHL is the linking number of the ’t Hooft loop with
all the dynamical vortex loops. Hence the ’t Hooft loop is given by the average

〈′tH〉= ∑Ci eiκN′tH e−SE+iκNT

∑Ci e−SE+iκNT
(3.7)

In Fig. 3 we plot the average value of the ’t Hooft loop as a function of κ , for various values of the
mass µ . The points in the graphs beyond κ = 0.08 should not be trusted since the errors are not
under control, as the average value of the Chern-Simons term in the denominator, as we apply Eqn.
(3.2), becomes vanishingly small. We note that in contrast with the Wilson loop, the ’t Hooft loop
has a clear dependence on the coefficient of the Chern-Simons term.

4. DISCUSSION AND CONCLUSIONS

The main result that we find is that the Wilson loop [7] is independent of the Chern-Simons
term (for sufficiently small values of its coefficient) while the ’t Hooft loop [8] is not. In fact for the
’t Hooft loop the contribution to the free energy is zero in the absence of the Chern-Simons term
but proportional to its coefficient in its presence. The free energy for the Wilson loop is simply
independent of the Chern-Simons term.

These results are surprising; but, there is a more interesting result. We have found that both
the Wilson loop and the ’t Hooft loop have perimeter law behaviour in both phases of the theory.
This is remarkable since there is a theorem which states that a perimeter law for both of these order
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Figure 3: (color online) The average value of the ’t Hooft loop in the presence of a Chern-Simons term as
a function of κ .

parameters requires the existence of massless particles [9]; however, we have no massless particles
in the theory. The possible explanation for this is that the theorem is circumvented since we have a
statistical long range interaction between the anyons.
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