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The fermion bag approach provides new solutions to sign problems. Here we show this by using

a simple example of a lattice Yukawa model constructed with staggered fermions and containing

a Z2 chiral symmetry. We argue that in the conventional formulation of the model the fermion

determinant is real but not necessarily positive. However,when formulated in terms of fermion

bags, the sign problem is absent. The solution requires the fermionic part to be formulated in

terms of fermion bags, while the bosonic part needs to be reformulated in world-line variables.
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1. Introduction

Lattice field theories containing fermions often suffer from sign problems in three or more
space-time dimensions and solving them continues to be an important challenge.Famous examples
where sign problems have hindered progress, include lattice QCD in the presence of a baryon
chemical potential and Fermi liquids with purely repulsive interactions. These sign problems are
considered very difficult and any progress in solving them will be a break through. Interestingly,
many simpler lattice field theories including four-fermion models and Yukawa models also suffer
from sign problems in the conventional formulations and in order to solve themit is necessary to
double the fermion degrees of freedom [1, 2]. Recently a new approach to lattice field theories has
emerged in which partition functions are written in the world-line representation[3]. Fermion sign
problems are then solved by summing over the world-lines in regions of space-time refered to as
fermion bags [4]. In this new approach, some sign problems, that are present in the conventional
approach, can be solved [5, 6]. Using a simple example of aZ2 symmetric Yukawa model, here we
show how the new fermion bag approach solves some unsolved sign problems.

2. The Sign Problem

Let us consider a simple lattice Yukawa model in which staggered fermions interact with an
Ising field. The action of the model is given by

Ss = ∑
x,y

ψx (D
s[σ ])xy ψy+Sb[σ ] (2.1)

whereψx,ψx are Grassmann valued fields on the lattice sitex with V sites. The Ising fieldσx =±1
is governed by the action,

Sb[σ ] =−β ∑
〈xy〉

σxσy. (2.2)

Here〈xy〉 refers to nearest neighbor sites. The matrixDs[σ ] is theV ×V Dirac operator whose
matrix elements are given by

(Ds[σ ])xy =−g σx δx,y+(Ds0)xy, (Ds0)xy = ∑
α

ηα,x∇α
xy, (2.3)

whereDs0 is the massless staggered Dirac matrix and the fluctuating mass term depends onthe
Ising field. The constantsβ andg are the couplings of the model which are assumed to be positive.
The indexα represents direction,ηα,x are the staggered fermion phase factors and

∇α
xy =

1
2
(δx,y+α̂ −δx+α̂,y). (2.4)

It is easy to verify that the action in (2.1) is invariant under the followingSU(2) transformations :
(

ψx

ψx

)

→V

(

ψx

ψx

)

at even sites,
(

ψx ψx

)

→
(

ψx ψx

)

V† at odd sites (2.5)

whereV ∈ SU(2) is part of the flavor symmetry and has been recently used in [7]. In addition
the action is also invariant under the followingZ2 chiral symmetry:ψx → iεxψx,ψx → iεxψx and
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σx → −σx whereεx = ±1 is the site parity. At small values ofβ , when the Ising field describes
massive particles, one can imagine integrating over theσ field and the theory is equivalent to a
four-fermion model.

In the conventional approach, after integration over the Grassmann variables, the partition
function of the model is given by

Z = ∑
[σ ]

eSb[σ ] Det
(

Ds[σ ]
)

. (2.6)

Due to the fluctuating mass term, Det(Ds[σ ]) can only be guaranteed to be real but not positive.
This is the origin of the sign problem in the conventional approach. In the symmetry broken phase
whereσx ≈ σ0+ηx, as long asηx ≪ σ0 the sign problem can be expected to be mild or absent.
However, close to critical points whereσ0 → 0, the sign problem can in principle become severe.
We will show below that it is possible to reformulate the partition function using world-line and
fermion bag variables such that the sign problem is absent.

3. Fermion Bag Approach

Instead of intergrating over all the fermion degrees of freedom, the idea behind the fermion bag
approach is to collect fermion degrees of freedom into groups so that integrating over each group
produces positive answers. While this is not always possible, we have found that the approach
does solve at least some sign problems. The sign problem in theZ2 Yukawa model discussed in the
above section is one example where the fermion bag approach succeeds insolving the sign problem
completely.

We begin with the partition function for the action in (2.1), which is given by

Z = ∑
[σ ]

(

∏
〈xy〉

eβσxσy

)

∫

[dψdψ ]e−∑xyψx(D
s0)xyψy ∏

x
egσxψxψx

. (3.1)

We then expand
egσxψxψx = 1+gσxψxψx = ∑

nx=0,1

(

gσxψxψx
)nx (3.2)

where in the last step we have introduced a discrete monomer field[n]. If nx = 1 then the site
contains a monomer, otherwise the site is considered empty. In terms of this monomer field it is
easy to write the partition function as

Z = ∑
[n]

{

∑
[σ ]

∏
〈xy〉

eβσxσy σz1σz2...σzk

}

×

[

∫

[dψdψ ]e−∑xyψx(D
s0)xyψygψz1

ψz1 gψz2
ψz2... gψzk

ψzk

]

(3.3)

where we assume the monomer configuration[n] containsk monomers located at the sitesz1,z2, ...zk.
Let us refer to the term in the curly bracket as the bosonic part and the term in the square bracket
as the fermion part.

Let us first focus on the fermionic part which is a Grassmann integral. We first note the
standard identities :

∫

dψx dψx ψxψx = −1,
∫

[ψψ ]e−∑xyψxMxyψy = Det(M). (3.4)
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Figure 1: The left figure illustrates a fermion bag configuration in twodimensions with ten monomers. Thus
the configuration contains 11 fermion bags, 10 of which are monomers with weight(−g) each and one large
free fermion bag with weight Det(Ws0) whereWs0 is the free staggered Dirac matrix but on a lattice which
does not contain the ten monomers. The right figure illustrates how the single large free fermion bag splits
into many smaller bags as the number of monomers increase.

Using these the full fermionic integral can be performed in two steps. First we integrate over Grass-
mann variables associated with the monomer sitesz1,z2, ...zk. Since the sources already contain
bothψ andψ at each of these sites, we can simply set to zero the terms in the exponent contain-
ing these sites. LetWs0[n] be the(V − k)× (V − k) matrix obtained fromDs0 by dropping the
rows and columns corresponding toz1,z2, ...zk. The Grassmann integral on each of thek monomer
sites gives a−1, while the integral over the remaining Grassmann variables yields Det(Ws0[n]).
Mathematically this means
[

∫

[dψdψ ]e−∑xyψx(D
s0)xyψy gψz1

ψz1 gψz2
ψz2... gψzk

ψzk

]

= (−g)k
∫

[dψdψ ] e−∑xyψx(W
s0 [n])xyψy = gk Det(Ws0[n]) ≥ 0. (3.5)

In the last step we have set(−1)k = 1 since Det(Ws0[n]) 6= 0 only if k is even. SinceWs0[n] is the
same as the free staggered fermion matrix, its determinant is positive.

In the above approach we divided the Grassmann variables into those associated with monomers
and those associated with the remaining free sites. Thus, every monomer andall the remaining free
sites together formfermion bags. The integral over the Grassmann variables within each fermion
bag is called the weight of the fermion bag. The weight of each monomer is−g and the weight
of the free fermion bag containing all the remaining sites is Det(Ws0[n]). Since the number of
monomers is always guaranteed to be even the product of all the fermion bag weights is positive.
Wheng is large, then the single large fermion bag containing free sites can split into smaller bags
(see figure 1). As pointed out in [8, 9], we can also use Wick’s theoremto show that

Det(Ws0[n]) = Det(Ds0)Det(Gs0[n]) (3.6)
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Figure 2: The left figure illustrates the world-line configuration of bonds and monomers. Each site must
contain an even number of bonds if it does not have a monomer onit, otherwise it must contain an odd
number of bonds. In the right figure we connect all the monomers together to represent a dual fermion
bag whose weight isgkDet(Gs0[n]) and show it along with the world-line configuration of the left figure.
Configurations of this type contribute to the parition function.

whereGs0 is ak× k free propagator matrix for fermions hopping between the monomers. Equa-
tion (3.6) is a duality relation and from the dual view point, the set of monomers withfermions
propagating freely through them behaves as a dual fermion bag with weight gkDet(Gs0[n]). This is
shown in the right figure in figure 2.

Having shown that the fermionic integral is positive, next we focus our attention to the bosonic
term in (3.3) which is clearly not positive as it stands. Using the identity

eβσxσy = cosh(β )[1+ tanh(β )σxσy] = cosh(β ) ∑
b〈xy〉=0,1

(tanh(β )σxσy)
b〈xy〉 (3.7)

on each bond, we introduce a discrete dimer field[b] where a bond contains a dimer ifb〈xy〉 = 1.
We can then rewrite

∑
[σ ]

∏
〈xy〉

eβσxσy σz1σz2...σzk =
(

cosh(β )
)dV

∑
[b]

∏
〈xy〉

(tanh(β ))b〈xy〉

{

∑
[σ ]

∏
x
(σx)

γx

}

(3.8)

whereγx is the total number dimers that touch the sitex plus the number of monomers on that site.
The sum over the Ising field can be performed using the relation

∑
σx

(σx)
γ
x = 2δγx,even (3.9)

which says that only dimer configurations that contain an evenγx at each lattice site contribute to
the path integral. Thus, we see that the bosonic part can be rewritten as

∑
[σ ]

∏
〈xy〉

eβσxσy σz1σz2...σzk = 2V
(

cosh(β )
)dV

∑
[b]

∏
〈xy〉

(tanh(β ))b〈xy〉 ∏
x

δγx,even (3.10)

5



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
2
)
2
2
4

Fermion Bag Solutions to Sign Problems Shailesh Chandrasekharan

which contains only positive terms.

Thus, substituting the results of (3.5), (3.6) and (3.10) into (3.3) we can write the partition
function as a sum over confgurations of monomers and dimers[b,n] such that

Z = 2V
(

cosh(β )
)dV

Det(Ds0) ∑
[b,n]

gk
(

∏
〈xy〉

(tanh(β ))b〈xy〉 ∏
x

δγx,even

)

Det(Gs0[n]) (3.11)

which is free of sign problems and can be used to design Monte Carlo algorithms.

4. Discussion

Using a simple model we have shown that some sign problems that seem unsolvable in the
conventional approach can be completely solved in the fermion bag approach. Some sign problems
in more complex models with continuous symmetries and those involving Wilson fermions can
also be solved using similar ideas [6]. In particular we can study four-fermion models of QCD
with interesting chiral symmetries.

A class of Yukawa models where the new solution is applicable can be characterized by the
action

S= ∑
xy

{

ψxDxyψy+χx(D
†)xyχy

}

−∑
x

(

g1φxψxχ −g2ϕ∗
x χxψx

)

+Sb(φ ,ϕ) (4.1)

whereψ ,ψ ,χ,χ are independent Grassmann fields,φ ,ϕ are complex boson fields,g1,g2 are real
positive couplings. Further, the bosonic actionSb(φ ,ϕ) has the property that any 2k-point correla-
tion function

∫

[dφdϕ ]e−Sbφx1...φxkϕ
∗
y1
...ϕ∗

yk
= ∑

[b]

Ω[b] (4.2)

can be expressed as a sum over configurations[b] with positive weightsΩ[b] that are calculable in
polynomial time. In other words a solution to the bosonic sign problem in the 2k-point correlation
function exists. Worldline representations are known to yield such solutions[11, 12].

In all cases where fermion sign problems have been solved, some transparent pairing mecha-
nism exists. It may be hidden in the original formulation and require a new formulation to make the
pairing transparent. When the pairing is unclear, sign problems remain unsoved [8]. In the future
it is important to focus on problems without an obvious pairing mechanism.
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