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1. Introduction

Four-fermion field theories are interesting in both condensed matter and particle physics. The
well known Hubbard model and its variants are often used in studying cuprate superconductors [1],
antiferromagnets [2]. Low energy nuclear physics is also studied with four-fermion couplings
in the effective field theory framework [3, 4]. In the context of more fundamental theories like
QCD, four-fermion field theories offer a simpler setting to study phenomena like fermion mass
generation and chiral symmetry breaking [5]. It has been suggested recently that quantum critical
phenomena in graphene can be studied with four-fermion field theories [6, 7]. It has also been
found there is a QCD-like sign problem in the four-fermion field theory [8]. Despite the wide
interest, strongly coupled four-fermion field theories remain poorly understood as compared to
their bosonic counterparts due to computational difficulties.

The only available method to compute quantities in a strongly interacting field theory with no
small parameter is the Monte Carlo (MC) method. The traditional MC approach is to integrate
the fermions out in favor of a determinant of a large fermion matrix, whenever this determinant is
positive a non-local probability distribution emerges, which can be used to construct a MC method.
Unfortunately, small eigenvalues of the fermion matrix which naturally arise in the presence of
massless fermions can cause singularities in the traditional MC approach. This makes it difficult to
study quantum critical phenomena containing massless fermions. In cases where the determinant
of the fermion matrix is not positive, the original theory is said to suffer from a sign problem and the
traditional approach is not useful. The repulsive Hubbard model away from half filling is a classic
example where progress has been limited due to sign problems. Other relativistic four-fermion
field theories like the Gross-Neveu (GN) models and Nambu-Jona-Lasinio (NJL) models are also
known to suffer from sign problems in three or more space-time dimensions [9].

Recently a new approach called the fermion bag approach was proposed to solve some four-
fermion field theories [10, 11, 12, 13, 14]. It is an extension of the meron cluster idea proposed
some time ago [15]. The idea behind the fermion bag is to identify fermion degrees of freedom
that cause sign problems and collect them in a bag and sum only over them. This is in contrast to
traditional approaches where all fermion degrees of freedom in the entire thermodynamic volume
are summed to solve the sign problem. In this talk, we consider lattice GN models containing
N flavors of massless staggered fermions with either a Z2 or a U(1) chiral symmetry [9]. While
we work in three space-time dimensions, our results can easily be extended to higher dimensions.
The Z2 models with odd N and all the U(1) models are known to suffer from a sign problem
when formulated in the traditional auxiliary field approach. Here we show that the sign problems
disappear in the fermion bag approach.

2. Auxiliary field approach

Lattice GN models are formulated in the auxiliary field approach through the action

SGN = ∑
x,y,i

χ i(x)(D[φ̄ ])x,yχi(y)+SAF (2.1)

where χ i(x),χi(x) denote the Grassmann valued fermion fields of flavor i = 1,2..,N at the lattice
site x. The explicit form of the auxiliary field action SAF depends on the GN model and will be
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discussed below. The matrix D[φ̄ ] is defined by(
D[φ̄ ]

)
xy = Dxy +δxy φ̄(x), (2.2)

where φ̄(x) is a function of the auxiliary fields as defined below and Dx,y is the free staggered
fermion matrixs,

Dx,y = mδx,y + ∑
α=1,2,3

ηx,α

2
[δx+α,y−δx,y+α ] . (2.3)

Since we work in three dimensions, α labels the three directions, ηx,α = e(iπζa·x),ζ1 = (0,0,0),
ζ2 = (1,0,0), ζ3 = (1,1,0) are the staggered fermion phase factors and m is the bare fermion mass.
We assume anti-periodic boundary conditions in all directions and denote the lattice volume by
V = L3.

Following [9], we define the auxiliary fields on dual sites x̃. The model with a Z2 chiral
symmetry is defined through a single real auxiliary field σ(x̃), such that

SAF [σ ] =
N

2g2 ∑
x̃

σ
2(x̃), (2.4)

φ̄(x) =
1
8 ∑
〈x̃,x〉

σ(x̃) (2.5)

while the model with a U(1) chiral symmetry requires two real auxiliary fields σ(x̃) and π(x̃),
such that

SAF [σ ,π] =
N

4g2 ∑
x̃

(
σ

2(x̃)+π
2(x̃)

)
, (2.6)

φ̄(x) =
1
8 ∑
〈x̃,x〉

(
σ(x̃)+ iε(x)π(x̃)

)
, (2.7)

where ε(x) is the parity of a lattice site (1 on even sites and −1 on odd sites). In the above
expressions, the set of nearest dual sites x̃ surrounding the fixed lattice site x is denoted as 〈x̃,x〉. In
this work we only consider these two classes of models.

The models contain a quantum critical point (QCP) separating a chirally symmetric phase
(at small couplings) from a phase where the chiral symmetry is spontaneously broken (at large
couplings). The symmetries that govern the QCP needs proper analysis due to fermion doubling.
Without such an analysis it is difficult to establish the continuum field theory that emerges at the
critical point [12]. In the traditional MC approach, one integrates over the Grassmann fields and
writes the partition function of the GN models as

ZZ2 =
∫
[Dσ ] e−SAF [σ ]

{
DetD([φ̄ ])

}N

, (2.8)

ZU(1) =
∫
[DσDπ] e−SAF [σ ,π]

{
DetD([φ̄ ])

}N

, (2.9)
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Figure 1: Distributions of positive (left graphs) and negative (right graphs) weight configurations as a func-
tion of log |Det(D[φ̄ ])|. One million configurations and 5000 configurations were generated at 63 and 123

lattices respectively. The distribution of positive configurations is almost identical to the one with negative
configurations suggesting a severe sign problem.

In order to design a MC method the determinant terms in the above expressions have to be
real and positive. In the Z2 model since φ̄ is real, the matrix elements of D[φ̄ ] are real. Hence,
the determinant is real but not necessarily positive. In the case of the U(1) model, φ̄ is complex
and so the matrix elements of D[φ̄ ] and its determinant can be complex. Hence, the Z2 model
as formulated in Eq. (2.8) suffers from a sign problem for all odd values of N, while the U(1)
model as formulated through Eq. (2.9) suffers from a sign problem for all values of N. In Fig. 1
we plot the distribution of configurations with positive and negative determinants as a function
of log |Det(D[φ̄ ])| for 63 and 123 lattices. As can be seen, the distribution of configurations with
positive and negative weights are almost identical suggesting a severe sign problem rather than a
mild one! Although we are not performing important sampling, our results clearly show that the
sign problem must be studied carefully.

3. Fermion bag approach

We will now show that the sign problems in both the Z2 and the U(1) models discussed in
section 2, disappear in the fermion bag approach. The proof relies on the fact that any ki-point
correlation function involving the ith flavor of staggered fermions defined through

Ci(xi1 , ...,xiki
) =

∫
[dχ idχi]e−∑x,y χ i(x) Dxy χi(y)χ i(xi1)χi(xi1) ... χ i(xiki

)χi(xiki
) (3.1)

is positive semi-definite. This is due to the special properties of the free staggered fermion matrix.
Indeed, using the ideas developed in the fermion bag approach [12], we can write

Ci(xi1 , ..,xiki
) = Det(D) Det(G[{x}i]) = Det(W [{x}i]) (3.2)

where G[{x}i] is the ki× ki matrix of propagators between the ki sites in the set {x}i ≡ xip , p =

1, ..,ki whose matrix elements are Gxp,xq = D−1
xp,xq

and the matrix W [{x}i] is a (V − ki)× (V − ki)
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matrix identical to the matrix D except that the sites in the set {x}i are dropped from the matrix.
All the determinants appearing in Eq.(3.2) can be shown to be positive (or zero). The simplest way
to see this is to consider the matrix W . Since it is exactly the same as the staggered fermion matrix
with some sites removed, its eigenvalues come in complex conjugate pairs of the form m± iλ .
Unpaired eigenvalues are always m and they too come in pairs when the lattice is bipartite. When
m = 0 then the determinant can be exactly zero. Thus, Ci(xi1 , ..,xiki

)≥ 0. We will use this property
to prove the absence of a sign problem in the fermion bag approach.

Instead of integrating out the fermion fields let us integrate out the auxiliary fields first and
construct the appropriate four fermion action for the models. Let us first consider the Z2 model.
Each integral over the auxiliary field σ(x̃) on the dual site x̃ gives,

Ix̃ =
∫

dσ(x̃) e−SAF− σ(x̃)
8 (∑i,[x,x̃] χ i(x)χi(x)) = N e−SI(x̃), (3.3)

where N =
√

2πg2/N and

SI(x̃) =−
g2

128N

[
∑

i,[x,x̃]
χ i(x)χi(x)

]2
, (3.4)

is the effective four-fermion interaction term at each dual site x̃. The symbol [x, x̃] denotes the set
of all lattice sites surrounding the dual site x̃. Thus, each integral generates many four-fermion
couplings of the form χ i(x)χi(x)χ j(y)χ j(y) where i and j are arbitrary flavor indices and x and y
are corners of the cube surrounding the dual site x̃. We can classify the possible couplings into
four types based on the bonds 〈xy〉 connecting the corners x and y. If the two corners are the same
we refer to it as a site-bond or a S-bond. If the two corners are the two neighboring sites we get a
L-bond (or a link-bond). Similarly, if the two corners are across a face diagonal or a body diagonal,
we call the bonds F-bond and B-bond respectively. These four bond types are illustrated Fig. 2.

Figure 2: An illustration of the four types of four-fermion couplings (or bonds) generated through the
auxiliary field integration. From left to right we have a S, L, F and B bond respectively.

Integration over all the auxiliary field variables yields the four-fermion interaction term of the
action SZ2,int = ∑x̃ SI(x̃). Collecting the terms in each of the four types of four fermion couplings
separately we see that

SZ2,int =USBS +ULBL +UFBF +UBBB (3.5)

where US/4 =UL/4 =UF/2 =UB = g2/(64N) and

Bbond = ∑
i, j,〈xy〉∈bond

χ i(x)χi(x)χ j(y)χ j(y). (3.6)

Based on the above results, the partition function of the Z2 model can be rewritten as

ZZ2 =
∫

∏
i
[dχ idχi] e−SZ2 . (3.7)
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where SZ2 = S0+SZ2,int is the equivalent four-fermion action of the model. S0 =∑x,y,i χ i(x)Dx,yχi(y)
is the free fermion action.

In the fermion bag approach, each four-fermion coupling is represented as a bond. For ex-
ample the four-fermion coupling of the type χ i(xp)χi(xp)χ j(xq)χ j(xq) can be denoted by the bond
variable bi j(xp,xq) = 0,1, such that if it is 0 then no bond is assumed to exist between the sites xp

and xq, otherwise the specific four-fermion coupling is inserted in the partition function. Due to the
Grassmann nature of the couplings higher powers of the couplings do not exist. More details can
be found in [10]. Thus, in the fermion bag formulation, the partition function can be written as a
sum over these bond configurations [b], such that

ZZ2 = ∑
[b]

UnS
S UnL

L UnF
F UnB

B

∫
∏

i
[dχ idχi] e−S0 ∏

i
χ i(xi1)χi(xi2)...χ i(xiki

)χi(xiki
)

= ∑
[b]

UnS
S UnL

L UnF
F UnB

B

{
∏

i
Ci(xi1 , ..,xiki

)
}

(3.8)

where nS,nL,nF and nB are the total number of bonds of each type and the correlation function
Ci(xi1 , ..,xiki

) was defined in Eq.(3.1). A given bond configuration [b] uniquely determines the ki

sites xi1 ....xiki
(ordered in a consistent way). Since we argued above that Ci(xi1 , ..,xiki

)≥ 0 there is
no sign problem in this expansion of the partition function for all non-negative values of US,UL,UF ,
UB, any positive integer N and real mass m.

In the case of the U(1) model, we need to integrate over both the auxiliary fields σ(x̃),π(x̃)
on every dual site. It is straightforward to verify that

Ix̃ =
∫
[dσ(x̃)dπ(x̃)]e−SAF− σ(x̃)

8 (∑i,[x̃,x] χ i(x)χi(x))× e−i π(x̃)
8 (∑i,[x̃,x] ε(x)χ i(x)χi(x)) = N e−SI(x̃) (3.9)

where N = (4πg2/N) and

SI(x̃) =
g2

64N

{[
∑

i,[x,x̃]
χ i(x)χi(x)

]2
−
[

∑
i,[x,x̃]

ε(x)χ i(x)χi(x)
]2
}
, (3.10)

Interestingly, the four-fermion couplings of the type S and F get canceled between the two terms in
the above equation. On the other hand couplings of the type L and B survive so that the four-fermion
action for the U(1) model turns out to be

SU(1) = S0 +ULBL +UBBB (3.11)

with UL/4 =UB = g2/(16N). Thus, the only difference between the Z2 and U(1) models is that the
couplings US =UF = 0 in the U(1) model. Indeed these couplings break the U(1) symmetry to a Z2

symmetry as can be easily verified. Since we already proved that the sign problem in the Z2 model
was absent for all non-negative values of US, UL, UF , UB and N in the fermion bag formulation, the
same is true for the U(1) model as well.

4. Conclusions

The fermion bag approach provides an alternative approach to fermion field theories where
solutions to new sign problems emerge naturally. Here we have demonstrated that some sign prob-
lems in the auxiliary field formulation of GN models, especially with Z2 and U(1) chiral symme-
tries, disappear in the fermion bag approach. While we have not shown here, we can solve sign
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problems in some lattice field theories containing both dynamical boson and fermion fields with
similar chiral symmetries. In these more complex models, the solutions emerge when bosons are
formulated in the world-line approach and the fermions are formulated in the bag approach. Such
an approach to quantum field theories was proposed in [16].

Sign problems in other fermion models with more complex symmetries are also solvable in
the fermion bag approach. However, in many interesting cases the Boltzmann weight of a fermion
bag, although non-negative, turns out to be a fermionant instead of a determinant [17]. Since
the computation of the fermionant can be exponentially hard, the fermion bag approach loses its
practical appeal in such cases. Still, we believe that there are many other interesting models where
the weight of the fermion bag continues to be positive and computable with polynomial effort.
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