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Fisher zeros are the zeros of the partition function in the complexβ = 2Nc/g2 plane. When they

pinch the real axis, finite size scaling allows one to distinguish between first and second order

transition and to estimate exponents. On the other hand, a gap signals confinement and the method

can be used to explore the boundary of the conformal window. We present recent numerical

results for 2DO(N) sigma models, 4DU(1) andSU(2) pure gauge andSU(3) gauge theory with

N f = 4 and 12 flavors. We discuss attempts to understand some of these results using analytical

methods. We discuss the 2-lattice matching and qualitativeaspects of the renormalization group

(RG) flows in the Migdal-Kadanoff approximation, in particular how RG flows starting at large

β seem to move around regions where bulk transitions occur. Weconsider the effects of the

boundary conditions on the nonperturbative part of the average energy and on the Fisher zeros for

the 1DO(2) model.
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1. Content of the talk

With the ongoing effort at the LHC, there has been a renewed interest in the phase diagram of
lattice gauge theory models. The location of the conformal windows for several families of models
have triggered intense discussions. Different numerical and analytical techniques have been applied
to QCD-like models with a large number of fermion flavors [1, 2, 3, 4, 5, 6, 7] or with fermions
in higher representations [8, 9, 10, 11]. See also [12, 13, 14, 15] for recent reviews of results and
expectations. It is important to understand the critical behavior of lattice models from various points
of view. It was proposed to consider complex extensions [16,17, 18] of the picture of confinement
proposed by Tomboulis [19]. It was observed that the Fisher’s zeros, the zeros of the partition
function in the complexβ plane, determine the global properties of the complex RG flows. In the
case where a phase transition is present, the scaling properties of the zeros [20, 21, 22, 23] allow us
to distinguish between a first and second order phase transition. In the following, we briefly review
the Finite Size Scaling (FSS) of the Fisher’s zeros. We then discuss numerical results forU(1)
in 3 and 4D,SU(2) in 4D with βAd joint , SU(3) in 4D N f = 4 and 12 flavors. We also discuss the
effect of boundary conditions in theO(2) sigma model and recent effort to relate these questions
to perturbative expansions.

2. Fisher’s zeros and Finite Size Scaling (FSS)

Fisher’s zeros provide information about FSS. The basic principle is the decomposition of the
partition function [24] at finite volumeLD into a singular and a regular part:

Z = Zsing.e
Gbounded (2.1)

Zsing. = e−LD fsing. (2.2)

Under a RG transformation, the lattice spacinga increases by a scale factorb, and

L → L/b (2.3)

fsing. → bD fsing. (2.4)

Zsing. → Zsing. . (2.5)

This has the important consequence [25] that the zeros of thepartition functions are RG invariant.
The nonlinear scaling variables (e. g.u = β −βc, . . .) transform homogeneously:ui → λiui. For
the relevant variables, we use the notationλi = b1/νi , and for the irrelevant variablesλ j = b−ω j .
The RG invariance ofZsing. means that

Zsing. = Q({uiL
1/νi},{u jL

−ω j}) (2.6)

For a single relevant variableu ≃ β − βc, we haveZsing = Q(uL1/ν). The complex equation
Z = 0 can be written as two real equations for two real variables and generic solutions are isolated
points.

Z = 0⇒ uL1/ν = wr with r = 1,2, . . . (2.7)

This implies the approximate form for the zeros:

βr(L)≃ βc +wrL
−1/ν (2.8)
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Figure 1: Fisher’s zeros forU(1) on L3 lattices (L=4 (left) and 6 (right)). The zeros of the real (imaginary)
part are represented by the blue (red) curves and the region of confidence is below the green line (zeros near
or above this line are not reliable).

There are many examples, where these discrete solutions follow approximate lines or lay inside
cusps. In the infinite volume limit, the set of zeros may (or may not) separate the complex plane
into two or more regions. For a first order transitionν is replaced by 1/D. For confining models
where there is no phase transition on the real coupling axis between weak and strong coupling, it is
sometimes possible to construct numerically RG flows in the complexβ plane [16, 17, 18]. These
examples show that the Fisher’s zeros can act as “gates" for the complex RG flows and govern their
global behavior. Since it is much easier to calculate the Fisher’s zeros than the complex RG flows
we shall now describe model calculations of the zeros.

3. Model calculations

We showed previously that for 2DO(N) models in the large-N limit, the RG flows go directly
from weak coupling to strong coupling [16, 17]. This means that the theory has a mass gap. We
would expect the same result for 3DU(1). Consistently, using canonical simulations and histogram
reweighting, we found no zeros near the real axis. This is illustrated in Fig. 1 where anything above
the green line is considered nonreliable.

The case of the 4DU(1) is more delicate. There is a transition but is it first or second order?
Despite some earlier suggestions of a second order transition [21, 22], there seems to be a general
agreement that the transition is first order [26, 27, 28]. This question has been revisited recently
from the point of view of Fisher zeros [29]. ForL4 lattices, the average plaquette distribution has a
double peak distribution with equal heights at a pseudo-critical βS. A double peak does not always
mean a first order transition. We consider a simple example where the plaquette distribution atβS

is a superposition of two Gaussians:

n(S)e−βSS ∝ (e−(1/2σ2)(S−S1)
2
+e−(1/2σ2)(S−S2)

2
) (3.1)

The zeros are located atβr = βS + i2π(2r+1)/(S2− S1). If (S2− S1) ∝ LD, we have a first order
phase transition (latent heat) and Imβ1 ∝ L−D. However, if(S2−S1) ∝ LD−ζ , then the width of the
double peak in theaverage plaquette goes to zero at infinite volume and Imβ1 ∝ L−1/ν with ν =

1/(D−ζ ). For the actualU(1) case for smallL, the distance between the peaks slowly decreases

3
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Figure 2: Lowest zeros forβAd joint= 0.5, 0.6, ..., 1.5 forL4 lattices withL= 4,6,and 8.

with increasing volume. In the infinite volume limit, the width of the double peak distribution
of the average plaquette goes to a nonzero limit (latent heat) for a first order phase transition and
to zero as an inverse power ofL for a second order transition. At this point, better statistics at
large volumes are necessary in our numerical construction of the density of states to discriminate
between the two scenarios, however fits of the imaginary partof the lowest zero described in Ref.
[29] show a goodness of fitQ=0.43 forL−4 leading behavior andQ < 10−8 for L−3.08 which favors
the first order scenario.

For pure gaugeSU(2), it is possible to create double peak distributions by adding an adjoint
term with a coefficientβAd joint sufficiently large and positive to the Wilson action. As a positive
βAd joint is increased, the Fisher’s zeros go down as illustrated in Fig. 2. There is a clear change of
behavior for 1.0 < βAd joint < 1.1. Subleading effects are important and larger volumes are being
studied in order to draw conclusions regarding the scaling of the real and imaginary part of the
lowest zeros.

We have started investigating the possibility of doing 2-lattice matching forSU(2) with a
mixed action [31]. A first step consists in considering the effect of βAd joint on RG flows starting at
weak coupling. This question can be addressed using the Migdal-Kadanoff (MK) approximation.
Using expansions with 20 characters, we found that the RG flows seem to go around possible
boundaries in order to reach the strong coupling fixed point (all β ’s = 0). Projections in two planes
are shown in Fig. 3 and are in qualitative agreement with thisidea and flows described by [30].

It is also possible to test the accuracy of the MK approximation by checking the 2-lattice
matching. If we had an exact RG transformation between a fine(2L)4 lattice and a coarseL4

lattice, then the 2R× 2R Wilson loops for the(2L)4 lattice and theR×R Wilson loop on aLD

lattice with effective couplings obtained by the RG transformation should match exactly. However,
if we use the MK approximation, the matching is not very accurate especially at large coupling
as shown in the Table 1. This could also be used as a test for theCheng-Tomboulis improvement
proposed at this conference [32] .

The Fisher’s zeros forSU(3) with N f = 4 and 12 quarks in the fundamental representation have
been investigated [33]. We used the standard Wilson action and unimproved staggered fermion
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Figure 3: Projection of the MK flows in the (β1/2,β1) and (β3/2,β1) planes.

Volume b βF βA β3/2 β2 Psize 〈P〉 σ
84 2.40000 0.00000 2x2 0.7766 0.00672
44 2 0.955274 -0.0496152 0.003759328 -0.000310275 1x1 0.7710 0.01226
84 2.40000 0.00000 4x4 0.9009 0.09007
44 2 0.955274 -0.0496152 0.003759328 -0.000310275 2x2 0.9973 0.01283
84 4.80000 0.00000 2x2 0.4016 0.00369
44 2 4.47578 -0.728286 0.188086 0.055336 1x1 0.2225 0.00655
84 4.80000 0.00000 4x4 0.5670 0.12841
44 2 4.47578 -0.728286 0.188086 0.055336 2x2 0.5144 0.01799

Table 1: Wilson loops on fine and coarse lattices.

action with the Rational Hybrid Monte Carlo (RHMC) algorithm. We started with relatively small
symmetric lattices and up to 50,000 configurations. The barequark mass is set to bemq = 0.02 for
now. ForN f = 12, we found a discontinuity for the plaquette nearβ ≃ 4.1 for V = 84 lattices as
shown in Fig. 4 left panel. The plaquette histories showed the characteristic hysteresis behavior.
For comparison, we show the crossover forN f = 4. The lowest zeros are shown in Fig. 4 right
panel. Possible hypothesis to be tested are that forN f = 12, the imaginary part scales likeL−4,
which signals a first order phase transition and that the realpart increases like log(L). Nonlinear
effects seem important at small volume and larger volume calculations are in progress. As already
noticed in Ref. [1], the chiral condensate has a discontinuity near the same value ofβ as the
plaquette. More recently, it was shown that improved actions can create a second discontinuity
with a broken single-site shift symmetry between the two transitions [34, 35].

We also studied the Fisher’s zeros for the 1D O(2) withL = 4,8,16,32 [36]. As shown in Fig.
5, the zeros are very different for open (o.b.c) and periodicboundary conditions (p.b.c). The MK
complex flows can also be constructed and are also shown in Fig. 5. At finite volume, the nonper-
turbative parts of the average energy are very different foropen and periodic boundary conditions.
It was found that|(E −EPT )/E| ∝ e−2β for open boundary condition and∝ e−βEv for periodic
boundary condition, whereEv is the energy of the periodic solution of the classical equation of
motion with winding number 1. Hadamard series have been constructed to improve the accuracy
at strong coupling.
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Figure 4: Average plaquette and Fisher’s zeros forSU(3) with N f = 4 and 12 at different volumes.
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Figure 5: MK complex flows for the system (o.b.c) and zeros from the two different boundary conditions

4. Conclusions

Much progress has been made in finding reliable ways to locatethe Fisher’s zeros of various
models. A consistent picture of confinement in terms of complex RG flow is emerging. Much work
remains to be done for understanding multiflavor models within this approach. Better analytical
approaches (based on improved RG or weak coupling expansions) are needed. The FSS of zeros
is simple, however subleading corrections are important (at least for unimproved actions). We plan
to monitor the effects of improvement on the zeros by turningon improvement adiabatically.
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FG02-91ER40664, DE-FG02-97ER41022, DE-FG02-12ER41871 and DE-AC02-98CH10886.

References

[1] J. B. Kogut and D. K. Sinclair,Nucl. Phys. B295, 465, 1988.

[2] T. Appelquist, G. T. Fleming, and E. T. Neil,Phys. Rev. D 79, 076010, 2009.

[3] A. Hasenfratz,Phys. Rev. D 80, 034505, 2009.

[4] Z. Fodor, K. Holland, J. Kuti, D. Nogradi, and C. Schroeder, Phys. Lett. B 681, 353, 2009.

6



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
2
)
2
2
9

Fisher zeros and conformality in lattice models Yannick Meurice

[5] A. Deuzeman, M. P. Lombardo, and E. Pallante,Phys. Rev. D 82, 074503, 2010.

[6] A. Hasenfratz,Phys. Rev. D, 82 014506, 2010.

[7] Z. Fodor, K. Holland, J. Kuti, D. Nogradi, and C. Schroeder, Phys. Lett. B, 703, 348, 2011.

[8] Y. Shamir, B. Svetitsky, and T. DeGrand,Phys. Rev. D 78, 031502, 2008.

[9] J. B. Kogut and D. K. Sinclair,Phys. Rev. D 81, 114507, 2010.

[10] T. DeGrand, Y. Shamir, and B. Svetitsky,Phys. Rev. D 83, 074507, 2011.

[11] F. Bursa, L. Del Debbio, D. Henty, E. Kerrane, B. Lucini,A. Patella, C. Pica, T. Pickup, and A. Rago,
Phys. Rev. D 84, 034506, 2011.

[12] T. DeGrand,Phil. Trans. R. Soc. A 369, 2701, 2011.

[13] M. C. Ogilvie,Phil. Trans. R. Soc. A 369, 2718, 2011.

[14] F. Sannino,Acta Phys. Polon. B 40, 3533, 2009.

[15] J. R. Andersen et al.,Eur. Phys. J. Plus, 126:81, 2011.

[16] A. Denbleyker, D. Du, Y. Liu, Y. Meurice, and H. Zou,Phys. Rev. Lett. 104, 251601, 2010.

[17] Y. Meurice and H. Zou,Phys. Rev. D 83, 056009, 2011.

[18] Y. Liu and Y. Meurice,Phys. Rev. D 83, 096008, 2011.

[19] E. T. Tomboulis,Mod. Phys. Lett. A 24, 2717–2730, 2009.

[20] N. A. Alves, B. A. Berg, and S. Sanielevici,Phys. Rev. Lett. 64, 3107, 1990.

[21] J. Jersak, C. B. Lang, and T. Neuhaus,Phys. Rev. Lett. 77, 1933, 1996.

[22] J. Jersak, C. Lang, and T. Neuhaus,Phys.Rev. D 54, 6909, 1996.

[23] W. Janke, D. A. Johnston, and R. Kenna,Nucl. Phys. B682, 618, 2004.

[24] T. Niemeijer and J. van Leeuwen, “Renormalization: Ising-like spin systems,” inPhase Transitions
and Critical Phenomena, vol. 6 (C. Domb and M. Green, eds.), (New York), Academic Press, 1976.

[25] C. Itzykson, R. Pearson, and J. Zuber,Nucl.Phys. B220, 415, 1983.

[26] I. Campos, A. Cruz, and A. Tarancon,Nucl.Phys. B528, 325, 1998.

[27] G. Arnold, B. Bunk, T. Lippert, and K. Schilling,Nucl. Phys. Proc. Suppl. 119, 864, 2003.

[28] M. Vettorazzo and P. de Forcrand,Nucl.Phys. B686, 85, 2004.

[29] A. Bazavov, B. A. Berg, D. Du, and Y. Meurice,Phys. Rev. D 85, 056010, 2012.

[30] K. M. Bitar, S. A. Gottlieb, and C. K. Zachos,Phys. Rev. D 26, 2853, 1982.

[31] A. Denbleyker, Y. Meurice, and J. Unmuth-Yockey, work in progress.

[32] X. Cheng and E. T. Tomboulis, arxiv1206.3616.

[33] Y. Liu, Y. Meurice, and D. Sinclair, work in progress.

[34] A. Cheng, A. Hasenfratz, and D. Schaich,Phys. Rev. D 85, 094509, 2012.

[35] A. Deuzeman, M. P. Lombardo, T. Nunes da Silva, and E. Pallante, arXiv:1209.5720.

[36] Y. Meurice and H. Zou, work in progress.

7


