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Fisher zeros are the zeros of the partition function in theglex 3 = 2N./g? plane. When they
pinch the real axis, finite size scaling allows one to distisg between first and second order
transition and to estimate exponents. On the other hangh sigials confinement and the method
can be used to explore the boundary of the conformal windowe. pvésent recent numerical
results for 2DO(N) sigma models, 4J (1) andSJ (2) pure gauge an8J (3) gauge theory with
Ni =4 and 12 flavors. We discuss attempts to understand somes#f tbsults using analytical
methods. We discuss the 2-lattice matching and qualitaspects of the renormalization group
(RG) flows in the Migdal-Kadanoff approximation, in partiauhow RG flows starting at large
B seem to move around regions where bulk transitions occur.ctisider the effects of the
boundary conditions on the nonperturbative part of theayeenergy and on the Fisher zeros for
the 1DO(2) model.
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1. Content of thetalk

With the ongoing effort at the LHC, there has been a renewteddst in the phase diagram of
lattice gauge theory models. The location of the confornmiatiews for several families of models
have triggered intense discussions. Different numericdleamalytical techniques have been applied
to QCD-like models with a large number of fermion flavors [1324, 5, 6, 7] or with fermions
in higher representations [8, 9, 10, 11]. See also [12, 1318}for recent reviews of results and
expectations. Itisimportant to understand the critichldwgor of lattice models from various points
of view. It was proposed to consider complex extensions1¥618] of the picture of confinement
proposed by Tomboulis [19]. It was observed that the Fisheeros, the zeros of the partition
function in the complex3 plane, determine the global properties of the complex RGsldw the
case where a phase transition is present, the scaling piespef the zeros [20, 21, 22, 23] allow us
to distinguish between a first and second order phase f@nsiit the following, we briefly review
the Finite Size Scaling (FSS) of the Fisher’s zeros. We thisouds numerical results far(1)
in 3 and 4D,3J (2) in 4D with Bagjoint, SJ(3) in 4D N¢ = 4 and 12 flavors. We also discuss the
effect of boundary conditions in th®(2) sigma model and recent effort to relate these questions
to perturbative expansions.

2. Fisher’szeros and Finite Size Scaling (FSS)

Fisher’'s zeros provide information about FSS. The basitcjpie is the decomposition of the
partition function [24] at finite volumé&P into a singular and a regular part:

Z = Zgipg €5omded (2.1)
Zsing. — e—LDfsing. (22)

Under a RG transformation, the lattice spacinigcreases by a scale factgrand

L L/b (2.3)
fsing. — bP fsing. (2.4)

This has the important consequence [25] that the zeros gdatigion functions are RG invariant.
The nonlinear scaling variables (e. g= B — f3, ...) transform homogeneously; — Aju;. For
the relevant variables, we use the notatior= b'/Vi, and for the irrelevant variablel = b=,
The RG invariance ofgng means that

Zgng = Q({uiLYV}, {ujL=9}) (2.6)

For a single relevant variable~ 8 — 3., we haveZgng = Q(uLl/"). The complex equation
Z = 0 can be written as two real equations for two real variabfesgeneric solutions are isolated
points.
Z=0=ulY’ =w, withr =1,2,... (2.7)

This implies the approximate form for the zeros:

Br(L) ~ Be+w LYY (2.8)
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Figure 1: Fisher's zeros fou (1) on L3 lattices (=4 (left) and 6 (right)). The zeros of the real (imaginary)
part are represented by the blue (red) curves and the reammbéidence is below the green line (zeros near
or above this line are not reliable).

There are many examples, where these discrete solutidiegfapproximate lines or lay inside
cusps. In the infinite volume limit, the set of zeros may (olymat) separate the complex plane
into two or more regions. For a first order transitieris replaced by AD. For confining models
where there is no phase transition on the real coupling @tisdéen weak and strong coupling, it is
sometimes possible to construct numerically RG flows in tiraglex3 plane [16, 17, 18]. These
examples show that the Fisher’s zeros can act as “gatesidaomplex RG flows and govern their
global behavior. Since it is much easier to calculate thbdfis zeros than the complex RG flows
we shall now describe model calculations of the zeros.

3. Modd calculations

We showed previously that for 2D(N) models in the larg®\ limit, the RG flows go directly
from weak coupling to strong coupling [16, 17]. This mearet the theory has a mass gap. We
would expect the same result for 8Y1). Consistently, using canonical simulations and histogram
reweighting, we found no zeros near the real axis. Thisustilated in Fig. 1 where anything above
the green line is considered nonreliable.

The case of the 4 (1) is more delicate. There is a transition but is it first or secorder?
Despite some earlier suggestions of a second order tiam$ii, 22], there seems to be a general
agreement that the transition is first order [26, 27, 28].sThiestion has been revisited recently
from the point of view of Fisher zeros [29]. Fbf lattices, the average plaquette distribution has a
double peak distribution with equal heights at a pseudizalifs. A double peak does not always
mean a first order transition. We consider a simple exampkraevtine plaquette distribution g
is a superposition of two Gaussians:

n(S)e PsSO (e~ (1/20%)(5-50)* | o=(1/20%)(5-%)%) (3.1)

The zeros are located Bt = Bs+i2m(2r +1) /(S — S). If (S —S) OLP, we have a first order
phase transition (latent heat) and@uil L—P. However, if(S, — S;) O LP~¢, then the width of the
double peak in thaverage plaquette goes to zero at infinite volume and3im] L~V with v =
1/(D—{). For the actuall (1) case for small, the distance between the peaks slowly decreases
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Figure2: Lowest zeros fofagjeinc= 0.5, 0.6, ..., 1.5 fot4 lattices withL= 4,6,and 8.

with increasing volume. In the infinite volume limit, the whdof the double peak distribution
of the average plaquette goes to a nonzero limit (lateni ieas first order phase transition and
to zero as an inverse power bffor a second order transition. At this point, better stamitsat
large volumes are necessary in our numerical construcfidineadensity of states to discriminate
between the two scenarios, however fits of the imaginarygiatte lowest zero described in Ref.
[29] show a goodness of 12=0.43 forL~* leading behavior an@ < 108 for L=3% which favors
the first order scenario.

For pure gaug&J (2), it is possible to create double peak distributions by agldin adjoint
term with a coefficienBaqjoine Sufficiently large and positive to the Wilson action. As aipos
Badjoint is increased, the Fisher’s zeros go down as illustratedgn Zi There is a clear change of
behavior for 10 < Bagdjeint < 1.1. Subleading effects are important and larger volumes @ireggb
studied in order to draw conclusions regarding the scalingh@ real and imaginary part of the
lowest zeros.

We have started investigating the possibility of doing tda matching for3J (2) with a
mixed action [31]. A first step consists in considering thfe&fof Bagjoirt ON RG flows starting at
weak coupling. This question can be addressed using thealdigadanoff (MK) approximation.
Using expansions with 20 characters, we found that the RGsflesem to go around possible
boundaries in order to reach the strong coupling fixed paiih{3(s = 0). Projections in two planes
are shown in Fig. 3 and are in qualitative agreement withitlga and flows described by [30].

It is also possible to test the accuracy of the MK approxiomatdy checking the 2-lattice
matching. If we had an exact RG transformation between a(2h¢* lattice and a coarsk*
lattice, then the R x 2R Wilson loops for the(2L)# lattice and theR x R Wilson loop on aLP
lattice with effective couplings obtained by the RG tramsfation should match exactly. However,
if we use the MK approximation, the matching is not very aateirespecially at large coupling
as shown in the Table 1. This could also be used as a test f@Hhbarg-Tomboulis improvement
proposed at this conference [32] .

The Fisher’s zeros fd8J (3) with N¢= 4 and 12 quarks in the fundamental representation have
been investigated [33]. We used the standard Wilson actionuaimproved staggered fermion
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Figure3: Projection of the MK flows in thef}; 2, B1) and (32, 1) planes.

Volume | b B Ba Ba/o B Psze (P) a

8% 2.40000 0.00000 2x2 0.7766 | 0.00672
74 2 0.955274 -0.0496152 | 0.003759328 | -0.000310275 1x1 0.7710 0.01226
8% 2.40000 0.00000 4x4 0.9009 | 0.09007
74 2 0.955274 -0.0496152 | 0.003759328 | -0.000310275 2x2 0.9973 0.01283
8% 4.80000 0.00000 2x2 0.4016 0.00369
44 2 4.47578 -0.728286 0.188086 0.055336 Ix1 0.2225 | 0.00655
8* 4.80000 0.00000 4x4 0.5670 0.12841
44 2 4.47578 -0.728286 0.188086 0.055336 2x2 0.5144 | 0.01799

Table 1: Wilson loops on fine and coarse lattices.

action with the Rational Hybrid Monte Carlo (RHMC) algorith We started with relatively small
symmetric lattices and up to 50,000 configurations. The faaek mass is set to lm, = 0.02 for
now. ForNs = 12, we found a discontinuity for the plaquette n@ar 4.1 for V = 8* lattices as
shown in Fig. 4 left panel. The plaquette histories showedctiaracteristic hysteresis behavior.
For comparison, we show the crossover Ifigr= 4. The lowest zeros are shown in Fig. 4 right
panel. Possible hypothesis to be tested are thafor 12, the imaginary part scales like?,
which signals a first order phase transition and that thepadlincreases like Iddt). Nonlinear
effects seem important at small volume and larger volumeutations are in progress. As already
noticed in Ref. [1], the chiral condensate has a discortiinnéar the same value @ as the
plaguette. More recently, it was shown that improved astioan create a second discontinuity
with a broken single-site shift symmetry between the twogitions [34, 35].

We also studied the Fisher’s zeros for the 1D O(2) Wwith 4,8,16,32 [36]. As shown in Fig.
5, the zeros are very different for open (0.b.c) and peribdiendary conditions (p.b.c). The MK
complex flows can also be constructed and are also shown irbFH#t finite volume, the nonper-
turbative parts of the average energy are very differenbfen and periodic boundary conditions.
It was found that (E — Epr)/E| O e 2 for open boundary condition ard e P& for periodic
boundary condition, wherg, is the energy of the periodic solution of the classical equabf
motion with winding number 1. Hadamard series have beenticarnied to improve the accuracy
at strong coupling.
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<Plag> vs. B for Nf=4 and Nf=12 Fisher's zeros for Nf=4 and Nf=12, m=0.02
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Figure 4: Average plaquette and Fisher’s zeros®k(3) with N¢= 4 and 12 at different volumes.
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Figure5: MK complex flows for the system (0.b.c) and zeros from the tiffeent boundary conditions

4. Conclusions

Much progress has been made in finding reliable ways to ldhat&isher’'s zeros of various
models. A consistent picture of confinement in terms of cexBG flow is emerging. Much work
remains to be done for understanding multiflavor modelsiwithis approach. Better analytical
approaches (based on improved RG or weak coupling expasaoa needed. The FSS of zeros
is simple, however subleading corrections are importareést for unimproved actions). We plan

to monitor the effects of improvement on the zeros by turmngmprovement adiabatically.
This research was supported in part by the Department ofggngrder Contracts No.
FG02-91ER40664, DE-FG02-97ER41022, DE-FG02-12ER418d1Dd-AC02-98CH10886.

References

[1] J. B. Kogut and D. K. SinclaimNucl. Phys. B295, 465, 1988.

[2] T. Appelquist, G. T. Fleming, and E. T. Nefhys. Rev. D 79, 076010, 2009.

[3] A. HasenfratzPhys. Rev. D 80, 034505, 2009.

[4] Z. Fodor, K. Holland, J. Kuti, D. Nogradi, and C. Schroed®hys. Lett. B 681, 353, 2009.



Fisher zeros and conformality in lattice models Yannick Meurice

[5] A. Deuzeman, M. P. Lombardo, and E. PallariRbys. Rev. D 82, 074503, 2010.
[6] A.HasenfratzPhys. Rev. D, 82 014506, 2010.
[7] Z. Fodor, K. Holland, J. Kuti, D. Nogradi, and C. Schroged®hys. Lett. B, 703, 348, 2011.
[8] Y. Shamir, B. Svetitsky, and T. DeGranghys. Rev. D 78, 031502, 2008.
[9] J. B. Kogut and D. K. Sinclaif?hys. Rev. D 81, 114507, 2010.
[10] T. DeGrand, Y. Shamir, and B. SvetitsiBhys. Rev. D 83, 074507, 2011.

[11] F. Bursa, L. Del Debbio, D. Henty, E. Kerrane, B. Lucifi,Patella, C. Pica, T. Pickup, and A. Rago,
Phys. Rev. D 84, 034506, 2011.

[12] T. DeGrandphil. Trans. R. Soc. A 369, 2701, 2011.

[13] M. C. Ogilvie, Phil. Trans. R. Soc. A 369, 2718, 2011.

[14] F. SanninoActa Phys. Polon. B 40, 3533, 2009.

[15] J. R. Andersen et alEur. Phys. J. Plus, 126:81, 2011.

[16] A. Denbleyker, D. Du, Y. Liu, Y. Meurice, and H. ZoBhys. Rev. Lett. 104, 251601, 2010.
[17] Y. Meurice and H. ZouPhys. Rev. D 83, 056009, 2011.

[18] Y. Liu and Y. Meurice Phys. Rev. D 83, 096008, 2011.

[19] E. T. TomboulisMod. Phys. Lett. A 24, 2717-2730, 2009.

[20] N. A. Alves, B. A. Berg, and S. Sanieleviéthys. Rev. Lett. 64, 3107, 1990.
[21] J. Jersak, C. B. Lang, and T. Neuhalbys. Rev. Lett. 77, 1933, 1996.

[22] J. Jersak, C. Lang, and T. NeuhaBbys.Rev. D 54, 6909, 1996.

[23] W. Janke, D. A. Johnston, and R. Kenhaicl. Phys. B682, 618, 2004.

[24] T. Niemeijer and J. van Leeuwen, “Renormalizationngslike spin systems,” ifthase Transitions
and Critical Phenomena, vol. 6 (C. Domb and M. Green, eds.), (New York), Academic Press6197

[25] C. Itzykson, R. Pearson, and J. Zubducl.Phys. B220, 415, 1983.

[26] I. Campos, A. Cruz, and A. Tarancaxycl.Phys. B528, 325, 1998.

[27] G. Arnold, B. Bunk, T. Lippert, and K. SchillindNucl. Phys. Proc. Suppl. 119, 864, 2003.
[28] M. Vettorazzo and P. de Forcrandiicl.Phys. B686, 85, 2004.

[29] A. Bazavov, B. A. Berg, D. Du, and Y. MeuricBhys. Rev. D 85, 056010, 2012.

[30] K. M. Bitar, S. A. Gottlieb, and C. K. ZachoBhys. Rev. D 26, 2853, 1982.

[31] A. Denbleyker, Y. Meurice, and J. Unmuth-Yockey, wonkgrogress.

[32] X.Chengand E. T. Tomboulis, arxiv1206.3616.

[33] Y. Liu, Y. Meurice, and D. Sinclair, work in progress.

[34] A.Cheng, A. Hasenfratz, and D. SchaiéHys. Rev. D 85, 094509, 2012.

[35] A. Deuzeman, M. P. Lombardo, T. Nunes da Silva, and HaRed, arXiv:1209.5720.

[36] Y. Meurice and H. Zou, work in progress.



