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In this report, we will explain how Monte Carlo method can be used to answer questions in
cosmology such as why we are living in (3+1) spacetime dimensions. To study real time evolution
in cosmology, we introduce two IR cutoffs instead of the usual Wick rotation to regularize the 0-
dimensional matrix model for superstring theory. Monte Carlo study reveals that 3 dimensional
expanding spaces emerge from 9 spatial dimensions after some critical time. We will also briefly
discuss our recent study on a simplified model which shares many important features like the
emergence of expanding 3 dimensional spaces.
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1. Introduction

Implications of quantum gravity on cosmology is an important frontier of high energy particle
physics and studied in various aspects [1, 2, 3, 4]. Interesting questions include why we are living
in 3 dimensional space, what is the fundamental mechanism for inflationary expansion, how we
can explain dark energy, etc.

To study these questions from the first principle, we need a nonperturbative tool which can
resolve the cosmic initial singularity. As lattice QCD is for QCD, matrix model is proposed as a
nonperturbative formulation for superstring theory, where dynamic generation of spacetime can be
described [5, 6, 7]. For example, the IIB matrix model [6] is given by

S =
1
g2 tr

(1
4

F2
µν +

1
2

ψα(C Γµ)αβ [Aµ ,ψβ ]
)
, (1.1)

where Aµ and ψα (Majorana-Weyl spinor) are adjoint N ×N Hermitian matrices. Fµν = i[Aµ ,Aν ]

and C is the charge conjugation matrix. The model can be obtained by a worldsheet regularization
of Green-Schwarz action in Schild gauge, and it possesses N = 2 supersymmetry which can be in-
terpreted as spacetime supersymmetry if we interpret matrix eigenvalues as a spacetime coordinate.
Note that this interpretation seems in contrast with the large N reduction where matrices correspond
to momenta in 10 dimensional super Yang-Mills theory. In fact, there are some evidences which
suggest that this simple model describes more than it may appear as a model in 0 dimension [8].
With these line of thinking, it is considered as a candidate for a nonperturbative formulation for
superstring theory, in an analogy with lattice.

However there are several issues which are not settled. In addition to the problem of an inter-
pretation on matrix mentioned above, it is a difficult question whether any general curved spacetime
such as AdS space can be described by this model. Another question is the double scaling limit
where we should scale coupling constant g as a function of N properly. Moreover in Euclidean
signature, a recent study based on Gaussian expansion method suggests that SO(10) rotational
symmetry spontaneously breaks down to SO(3) [9]. We would like to resolve this final issue in this
report and we will explain how we can study cosmology with this model by a Monte Carlo method
based on [10]

2. Regularization for the Lorentzian partition function

In the Lorentzian signature, the partition function for IIB matrix model is written as

Z =
∫

dAPf(M )exp(iSb) , (2.1)

where we rewrote the fermionic term as a Pfaffian Pf(M ) which is real in contrast to the Euclidean
case. On the other hand, the bosonic action

Sb =
1

4g2 tr(−2F2
0i +F2

i j) (2.2)

is not positive-definite any longer, and moreover it give rise to a complex phase.
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Before taking care of this complex phase, let’s fix a gauge for the noncompact boost symmetry.
It’s convenient later to do this in a scale invariant way,

1
N

trA2
0 ≤ κ

1
N

trA2
i , (2.3)

where κ → ∞ removes this IR cutoff. Note that the cutoff breaks SO(9,1) Lorentz symmetry and
supersymmetry explicitly. Nevertheless remaining SO(9) rotational symmetry is enough to study
whether there exist a spontaneous symmetry breaking of 9 dimensional spaces.

Now we handle the complex phase in several steps. The recipe is to introduce a damping term
and integrate out overall scale as an usual field theory technique. First let’s introduce a damping
term in the partition function,

lim
ε→0

exp(−ε |Sb|) , (2.4)

and then insert an identity, ∫ ∞

0
dr δ

( 1
N

trA2
i − r

)
. (2.5)

As a final step, we rescale Aµ →
√

rAµ and integrate out overall scale r.

Z = lim
ε→0

∫
dA′

∫ ∞

0
dr δ

( 1
N

trA2
i − r

)
Pf(M )exp(−ε|Sb|+ iSb)

= lim
ε→0

∫
dA′′ Pf(M )

∫ ∞

0
dr r

D+dF
2 (N2−1)−1exp(−r2(ε|Sb|− iSb))

∝
∫

dA′′ Pf(M ) |Sb|−
D+dF

4 (N2−1) (2.6)

where dA′ = dAθ(trA2
0 − κ trA2

i ), dA′′ = dA′ δ
( 1

N trA2
i − 1

)
, and θ(...) is a step function. The

fermionic degrees of freedom dF = 8 in the D = 10 dimension. Therefore the bosonic part strongly
prefers trF2 = 0 after an overall scale integration.

Since the partition function diverges when trF2 = 0 , let’s introduce another IR cutoff L when
we insert the identity,

1
N

trA2
i ≤ L2 →

∫ L2

0
dr δ

( 1
N

trA2
i − r

)
, (2.7)

which makes the integral representation of Gamma function (
∫ ∞

0 dr ...) into the incomplete Gamma
function (

∫ L2

0 dr ...) and finally the partition function is finite. In the large N and L limit, the bosonic
term will approach delta function up to overall constant,∫ L2

0
dr ... → δ (Sb) . (2.8)

Indeed it is expected that large L limit is trivial if we recall that the Euclidean partition function is
finite without any IR cutoff. Therefore we can write the final form of the partition function as

Z =
∫

dA′′ Pf(M )δ (Sb) , (2.9)
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where overall scale and boost symmetry is fixed in the integration measure dA′′. When matrices
are close to commute each other, two IR cutoffs restrict these eigenvalues within a finite box with
size L9 ×

√
κL. They are similar to Dirichlet boundary condition in a sense that

1
N

trA2n
0 ≤ κ

1
N

trA2n
i ≤ L2n , (2.10)

approaches Dirichlet boundary condition as n → ∞.
We want to make some comments in comparison with the Euclidean case. In the Euclidean

case, trF2 = 0 is also preferred both before and after an overall scale integration due to the action
weight e−Sb and positive-definite property of Sb. However an implication of this condition trF2 = 0
is quite different. While commuting matrices are dominant in the Euclidean case, noncommuting
matrices with 2trF2

0i = trF2
i j ̸= 0 can contribute in the Lorentzian signature. Indeed a Lie algebra

type configurations play crucial role in the early universe described by the Lorentzian model which
will be shown in the next section.

3. Monte Carlo results for the SSB and the mechanism

The simulation is performed generally without further gauge fixing except two IR cutoffs. On
the other hand, A0’s diagonal basis is very convenient in measurements. In this basis, the bosonic
action for A0 is

trF2
0i = ∑

I,J
(tI − tJ)2|(Ai)IJ|2 , (3.1)

where t1 ≤ t2 ≤ ·· · tN are eigenvalues of A0. Since off-diagonal space matrix elements (Ai)IJ sup-
press time eigenvalue separation with this attraction, these temporal eigenvalues do not expected to
be infinitely stretched in the infinite volume limit (κ,L → ∞). On the other hand in supersymmetric
case, the repulsive fermionic interaction cancels the attraction as

S(1−loop)
e f f = (D−2−dF)∑

I,J
log(tI − tJ)2 = 0 , (3.2)

where −2 is due to the Vandermonde determinant. Therefore the range of time will drastically
increase and possibly stretched to infinity thanks to the supersymmetry.

In this basis, space matrices show an interesting behavior as Figure 1. They show more or
less band-diagonal structure with a suppression towards the off-diagonal direction. Based on these
structure, we extract time dependence of space matrices with

(Āi(t))IJ = (Ai)tItJ , (3.3)

where k ≤ I ≤ k+n−1 with a properly chosen band size n. tk is smallest time eigenvalue of n×n
subblock matrix Āi(t) and t is an average over n time eigenvalues of the subblock.

Based on these time dependent submatrices Āi(t), we consider an order parameter for rota-
tional symmetry breaking

Ti j(t) =
1
n

tr(ĀiĀ j) . (3.4)
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Figure 1: The space matrix elements QIJ = ∑i(A2
i )IJ are shown w.r.t. off-diagonal direction I − J for four

values of I + J with N = 16,κ = 4 data in the log scale. Near diagonal lines are most dominant and matrix
elements become smaller towards the off-diagonal direction.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-2.5 -2 -1.5 -1 -0.5  0

ei
ge

nv
al

ue
s 

of
 T

ij(
t)

t

Figure 2: The space extent represented by 9 eigenvalues of Ti j are plotted as a function of time for N =

16,κ = 4 data with a band size n = 4. Three of them grows faster than linear while remaining 6 extra
dimensions are not much changed in their size.

It is a 9×9 real symmetric matrix, and if we denote eigenvalues as λ1 ≥ λ2 ≥ ·· ·λ9, any hierarchy
between them will be an evidence for spontaneous symmetry breaking of the 9 dimensional rotation
symmetry. Note that the average over i-th largest eigenvalue do not necessarily SO(9) symmetric
with j-th. Moreover λi =

1
n tr(Āi)

2 represents the extent of space in diagonal basis for Ti j. Figure
2 demonstrates that 9 spaces are small at the beginning, while 3 of them increase drastically later.
We can define a critical time when a gap λ3 −λ4 become larger than λ2 −λ3.

With this definition for the critical time, we rescale all data w.r.t. the critical time as

tphy = (t − tc)/R(tc) , Rphy = R(t)/R(tc) , (3.5)

where R(t) = ∑i
1
n tr Ā2

i . Figure 3 suggests a scaling behavior for different κ and N data in this
physical coordinate. We can roughly identify a continuum limit as

N → ∞ , κ = βN p , (3.6)
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Figure 3: The physical parameters R(t)/R(tc) is plotted against (t − tc)/R(tc) for various κ and N. The left
hand side is close to the continuum limit, while the right hand side is close to the infinite volume limit.

where β is a constant and numerical value for p is approximately 0.25. The infinite volume limit
is simply

β → ∞ , L → ∞ . (3.7)

The mechanism behind the dynamic breaking of SO(9) can be easily understood if we consider
an extreme limit : κ → ∞ for a fixed N. Since our partition function prefers trF2 = 0, both trF2

0i and
trF2

i j will increase as κ increases, while 1
N trA2

i is fixed to 1. Therefore it is a simple maximizing
problem of trF2

i j with 1
N trA2

i = 1 constraint.

L = −1
4

trF2
i j +

λ
2

( 1
N

trA2
i −1

)
. (3.8)

We can easily solve it by a Monte Carlo method, and 2×2 representation for su(2) algebra is the
solution. This give rise to 3 expanding spaces corresponds to 3 generators of su(2). Note that this
extreme limit is not physical since the lattice spacing diverges. However our results shows that
expanding 3 spaces are common in the large κ and N parameter spaces.

4. Discussion on effective methods for late time

Direct simulation is rather restricted to the very beginning of the universe due to the numerical
cost, while there are a lot of interesting questions in the late time. Here we will briefly discuss two
independent approaches.

A classical equation of motion can be dominant at late time due to the expansion of spaces.
Therefore an analytic study on classical solutions can provide a complementary method [11]. With
two constraints for cutoffs in the Lorentzian model, we consider

−[A0, [A0,Ai]]+ [A j, [A j,Ai]]−λAi = 0 ,

−[A j, [A j,A0]]− λ̃A0 = 0 , (4.1)

where λ and λ̃ are corresponding Lagrange multipliers. There are many expanding commutative
solutions. One simple example is an expanding universes with R(t) ∝

√
t2 + c, where equation of
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state parameter for cosmology is w =−2c/(3t2)−1/3. Depending on the sign of a constant c, this
classical solution can describe either an accelerated expansion with cosmological constant decrease
as time, or an evolution from radiation domination to matter domination era.

Another method is a quenched model. Here we should be careful when we quench fermions
since the supersymmetry allows time eigenvalues to be stretched. Therefore we consider VDM
model

ZV DM =
∫

dtdAi ∆D exp(iSb) , (4.2)

where ∆ = ∏I<J(tI − tJ) is the Vandermonde determinant. This model also shares important prop-
erty such as expansion or SSB to 3 dimension.

Finally we want to mention that the time history of our universe includes hypothetical infla-
tionary expansion, power law expansion for radiation and matter dominated era, and accelerated
expansion at present. Such time evolution is very distinct from homogeneous and isotropic space
of our universe. For this reason, we try to keep in Lorentzian signature and avoid Wick rotation.
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by the Grant-in-Aid from the Japanese Ministry of Education, Culture, Sports, Science and Tech-
nology (No. 20105002, 20105005, 21674002, 23105710), the Grant-in-Aid for Scientific Research
(No. 20540286, 23244057) from JSPS, and the HPCI Strategic Program of Ministry of Education.
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