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1. Introduction

By now various regularization methods for supersymmetric gauge theories have been found,
such as the lattice regularization (see e.g., @J, [Fourier mode regularizatioff], the largeN
reduction B, 4] and non-commutative geometifif[ However, all these methods require a lot of
computational costs due to the existence of the dynamical fermions. In this article we introduce a
new simulation method for investigating a class of supersymmetric field theories via localization
method [B], which reduces the evaluation of certain observables to calculations in simple matrix
models. As a demonstration, we present numerical regf]ifsf the so-called ABJM theoryd],
which is the 3d4” = 6 superconformdl (N) x U (N) Chern-Simons gauge theory.

2. Localization method for general 3d.#" = 2 supersymmetric field theory onS®

In this section we explain the basic idea of the localization mefBpa{d write down the par-
tition function of a general 3d¢” = 2 supersymmetric field theory @& in terms of a matrix model
[@]. The ABJIM theory belongs to this class of theories. The localization method has been applied
B to 4d .+ = 4 super Yang-Mills theory, and some conjecture on the half-BPS Wilson foops
[I7] has been confirmed. Those readers who are interested in just understanding our numerical
results may skip this section.

Let us consider the partition function of a supersymmetric field theory,

z— / 90 9%, 2.1)

where @ represents the collection of the components fields. Let us suppose that the action is
invariant under an off-shell superchar@e namely QS®] = 0. Then, the closure of the SUSY
algebra require®? = %, where %3 is the generator of a bosonic symmetry the theory has. The
first step of the localization method is to consider the deformation®@yeaact term as

Z(t) = / PP e SP-QV(@] (2.2)

whereV is any fermionic functional satisfyinggV[®] = 0. By taking the derivative with respect
tot, we obtain

di(tt) — / 9 (QV[0])e SP-VIP) — _ / 70 Q (V[ele SO tVI?])

= [ Q@) vi@jeSerive) 23)

If we assume th&-invariance of the measur®@® = 0), namely thaf is non-anomalous, then
the deformed partition functiod(t) should be independent of the parameteThis implies that
the original partition functiorZ can be written as

= i - = i — S| tQV[®]
z tILToZ(t) Z(t) tlm 9P e . (2.4)

IThis formula is also reproduced by a numerical simulation in the Iatgjesit [[I0.
2Here we assume the absence of the boundary term.
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In this limit, the saddle point approximation around the classical solutiQWte- 0 becomes exact.
Hence we obtain

Z= ;exq—s[(bo])zl—loop(q)o)» (2.5)

0
where® is the ‘localized’ configuration determined W@V )[®o] = 0. The summatiory o, over

the saddle points should be understood as an integration if the saddle points are labeled by contin-
uous parameters. The one-loop determiraniyop around®g is given by

Z1_joop = tlﬂ;ro]o /-@(5(1)) e tQVI®l (2.6)

P=Po+3P
We can also use this method to calcul@énvariant operators such as supersymmetric Wilson
loops M.

Let us apply the localization method to a general 8d= 2 supersymmetric gauge theory on
S which is a Yang-Mills Chern-Simons gauge theory with arbitrary gauge gBs; x - - - x G;
and Chern-Simons levels coupled to arbitrary numbertot= 2 chiral multiplets with arbitrary
representations and R-charge assignrhéfiie formula for the partition function is obtained B [

- grankGy (1) drankGr 5(r) T G P
lw‘ (2m)rankG, (2m)rankG, rllAVec( o' )) HAMat(U’qa)v (2.7)
a=

a

where|W]| is the order of the Weyl group @&, ando® is the Cartan part of the adjoint scalar
in the vectormultiplet with the gauge gro@y at the localization pomtASgc( ) represents the
contribution from the vector multiplet with the gauge graBpgiven byt
@.g@q2
Ga () _ . a (0)
AR (oY) = |_| [Zsmhi2 }

exp{'ka 5@ o(a)} , (2.8)
am
a@eA,

wherea® labels the positive roots @s. Mat(a Qq) is the contribution from the chiral multiplet
with the representatio®, and R-charge), (g, = 1/2 in the canonical assignment) :

P o Po- O
A/“’(a;qa): fli—igy — , (2.9)
Mat pale_l% ( 21T )

wherep, is the weight vector ofZ, and f(z) is given by

f(z) = exp|—izlog(1— &™) — - < 24 = le(eznz)> I]_g] . (2.10)
As a special case of a pair of chiral multiplets with the represent%c&nd%?in the canonical
R-charge assignment, which corresponds to tfie= 4 hypermultiplet, the formuld9) reduces

to the following simple form

1

Dy (0; 1/2)AM (0:1/2) = [ 5==po:
a a plgL, 2coshP?

(2.11)

3More generally, we can also include mass and FI teBhs |
“Note that this formula is independent of the Yang-Mills gauge coupling. This is because we can@d@beas
the action of /" = 2 super Yang-Mills theory itself. Then the deformation parantatenothing but the gauge coupling.
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3. Numerical methods for the ABJM theory at arbitrary N and k

Now let us consider the ABJM theory, which is the.3d = 6 superconformal (N) x U(N)
Chern-Simons gauge theoi@][ The Chern-Simons levels (the analogue of the gauge coupling
constants) corresponding to two gauge groups are quantized to be integeds; k. This theory
is conjectured to be dual to M-theory @S, x ' /Z for k < N¥/3, and to type IIA superstring
onAdS, x CP® atk < N < k°. The planar largéN limit is defined as the larghklimit with the *t
Hooft coupling constamk = N /k kept fixed.

The Monte Carlo study of the ABJM theory by usual lattice approach seems quite difficult for
the following three reasons. Firstly, the construction of the Chern-Simons term on the lattice is
not straightforward, although there is a propoE&][ Secondly, the Chern-Simons term is purely
imaginary in the Euclidean formulation, which causes the sign problem in the importance sampling.
Thirdly, the lattice discretization necessarily breaks supersymmetry, and one needs to restore it in
the continuum limit by fine-tuning parameters

In order to circumvent these problems, we apply the Monte Carlo method to a matrix model
obtained via the localization. According to the general formEl@)( the partition function of the
ABJIM theory onS® is given by , 5

1 / dNy Ny i< [ZSinh“i;“'} [ZSinhQ}
(N2 (2m (2™ Mij [2cost, | ’

Z(N,K) = e I (W=VD) (3.1)

which is commonly referred to as the ABJM matrix model. From the partition function, we define

the free energy as
F(N,k) = logZ(N,Kk). (3.2)

Thus the ABJM free energy is given just by d-2limensional integral. Note that the ABJM matrix
model describes the continuum theory without any regularization artifact.

The ABJM matrix model in the fornf) is not suitable for Monte Carlo simulation since the
integrand is not real positive. However, as we reviewed in Appendix Bafi[detail (See also the
original work [14]), one can rewrite the ABJM matrix model as follows.

1
Z(va) :CN,kg(va)v CN,k = m,
i< tant? (%)
= N = N 7S(N>k;xl>”'7XN)
g(N, k) ./d X0 Beos2) _/d X e . (3.3)

An important point here is that, in this forf.9), the integrand is real positive, and we can perform
Monte Carlo simulation in a straightforward manner.

In order to calculate the partition function, we need to rewrite it in terms of expectation values
of some quantities, which are directly calculable by Markov-chain Monte Carlo methods. The
basic idea is to calculate the ratios of the partition functions for diffé¥ems expectation valués
Let us decomposH into N = N; + N and consider the ratio

5This might be overcome by a non-lattice regularization of the ABJM th¢B8yjased on the larght reduction
on $® [@, which is shown to be useful in studying the planar limit of the 4= 4 super Yang-Mills theonfd.
5We can also calculate the ratios of the partition functions for diffekexst expectation valueg]|
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Figure 1: (Left) The free energy is plotted agair$#/2 for k = 1,2,4,6,8. The data points can be fitted
to straight lines, which implie§ ~ N%2 asN increases. (Right) The M-theory limit of the free energy
lIMN_ o F/N3/2 is plotted against/k. Our data are in good agreement with the result (5.1) predicted from
the eleven-dimensional supergravity, which is represented by the solid line.

g(N,k) SN KX+ X0, )+ SN2 K 1. Xn) — S(NLK
— ( @XNukxg, - xny 2, KXy +1, X)) —S(NLK) 3.4
g(Nl,k)g(Nz,k) < >N1,N2 34

NN _
— tant? <X' _X‘]>> , (3.5)
<i|le— 1+1 2k Ni,Np

where the symbo(- - - )n, n, represents the expectation value with respect to the “action” given by
S(N1, K X1, -+, XN, ) + S(N2, K; XNy 1, -, Xn ). In order to calculate the right-hand side Bff) with

good accuracy, it is necessary to takesmall enough to make sure that the observabl@iB)
does not fluctuate violently during the simulation. In actual calculation weNgse 1. Then, by
calculating B3 for N; = 1,2,3,--- and by using thé\ = 1 resultg(1,k) = 11, we can obtain the
free energy foN = 2,3,4, - - - successively with a fixed value &f

4. Results for the free energy

We present our numerical resuff for the free energy of the ABJM theory. First we consider
the largeN limit with fixed k, which is conjectured to correspond to the eleven dimensional super-
gravity onAdS, x S’ /Zy. In refs. [[5, I8 @7, the free energy in the M-theory limit\N(— co with
k fixed) has been calculated by various analytic methods and confirmed the prediction
n\gﬂNw

Fsucra= — (4.1)

from the dual eleven-dimensional supergravity. Fidli(eeft) shows that the free energygrows
in magnitude ad®? with N. Actually F /N%? behaves aB (N, k) /N%2 = hy(k) +hy (k) /N, which
enables us to obtain the M-theory linhig(k) = limn_,. F (N, k) /N2 reliably. In fig.[l (Right) we
plot ho(k) againsty/k, which confirms the predictioB{J) from the eleven-dimensional supergrav-
ity fork=1,2,---,10 very precisely.

Let us next study the finitét effects. An important analytical result on finiteeffects is that
the 1/N corrections around the planar limit are resummed in a closed f6&{if]
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Figure 2: (Left) The free energy of the ABJM theory fdt = 4 is plotted againstM. The solid line
represents the FHM result. The dotted line represent the perturbative Feguits —N?log % —Nlog2m+

21ogGy(N + 1) with the Barnes G-functioG,(x). (Right) The differencé& — Frpy is plotted againsii for

various values ok. It reveals non-negligible discrepancies for elaictvhich are almost independent igf

Feum(N,A) = log [1 (4HZN)1/3Ai (\/7112\1\22) ” (/\ — 2—14— 3);\]22>” , 4.2)

V2 A
where AiX) is the Airy function and the type of correction(@znﬁ) is neglected. In figl2
(Left) we plot our results foN = 4 and compare them with the FHM resiit?). We find that
our result agrees reasonably well with the FHM result in the strong coupling regime. To see more
precisely, we plot in figl (Right) the difference between our result and the FHM result against
N for variousk. It turns out that there are discrepancies which are almost independé&ht of
This strongly suggests that the FHM result correctly incorporates the Rngects except for a
term which depends only da Note that this discrepancy cannot be explained by the worldsheet
instanton effect @*Z”ﬁ), which is neglected in FHM. See reff][for a natural interpretation of
this discrepancy from topological string theory.

5. Summary and discussions

In this paper we have established a simple numerical method for studying the ABJM theory
on a three sphere for arbitrary raNkand arbitrary Chern-Simons level The crucial point is that
we are able to rewrite the ABJM matrix model, which is obtained after applying the localization
technique, in such a way that the integrand becomes positive definite. By using this method, we
have confirmed from first principles that the free energy in the M-theory limit grows proportionally
to N%/2 as predicted from the eleven-dimensional supergravity. We have also found that the FHM
formula with the additional terms describes the free energy of the ABJM theory in the type IIA
superstring and M-theory regimes. While we have focused on the free energy as the most funda-
mental quantity in the ABJM theory, our method can be used to calculate the expectation values of
BPS operators. For instance, it is possible to calculate the expectation value of the circular Wilson
loop for various representatiorigg].
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We hope that the results of this work are convincing enough to show the power of the combi-
nation of the localization method and numerical simulation. We expect further numerical study of
various localized matrix models will reveal exciting new aspects of supersymmetric gauge theories
and guantum gravity.
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