
P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
2
)
2
4
2

Non-perturbative Renormalization of Improved
Staggered Bilinears

Andrew T. Lytle∗

School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, UK
E-mail: atlytle@gmail.com

Stephen R. Sharpe
Department of Physics, University of Washington, Seattle WA 98195-1560, USA
E-mail: srsharpe@uw.edu

We compute Z-factors for general staggered bilinears on fine (a≈ 0.09 fm) MILC ensembles us-
ing both asqtad and HYP-smeared valence actions, comparing the results to the predictions of one-
loop perturbation theory. This is an extension of previous work on the coarse (a≈ 0.12 fm) MILC
ensembles. It provides a laboratory for studying NPR methodology in the staggered context, and
is an important stepping stone for fully non-perturbative matching factors in ongoing computa-
tions of BK and other weak matrix elements. We also implement non-exceptional RI/SMOM
renormalization conditions using the asqtad action and present first results.
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1. Introduction

Renormalization of lattice operators is an essential component for many precision applica-
tions of lattice QCD. Amongst these are the determination of quark masses and weak interaction
phenomenology, both of which require matching operators to continuum renormalization schemes.

Non-perturbative renormalization (NPR) [1] is a technique for performing such matching cal-
culations using lattice simulations directly, and does not require the use of lattice perturbation the-
ory. Instead, it requires that the renormalization scale µ is well separated from both the cutoff scale
of the simulation, 1/a, and the scale at which non-perturbative QCD effects become significant:

ΛQCD� µ � 1/a . (1.1)

There are relatively few NPR studies using staggered fermions [2, 3, 4, 5, 6]. We have calcu-
lated matching factors for all staggered fermion bilinears spread over a 24 hypercube, determining
their renormalization scale dependence and comparing them to the predictions of one-loop lattice
perturbation theory (PT) [7]. We use both HYP-smeared and asqtad valence fermions on an asqtad
sea. Previously we used the MILC coarse ensembles [5]; here, in Section 2, we extend the results
to the fine lattices.

The bilinear operators form the building blocks for the four-quark operators used for weak in-
teraction phenomenology. An ongoing computation of BK using HYP-smeared staggered fermions
finds B̂K = 0.727± 0.004(stat)± 0.038(sys) [8]. The dominant error comes from using the one-
loop perturbative matching factor, and is estimated to be 4.4% assuming that two-loop effects are
of size α2. The present work is an important first step towards fully non-perturbative matching,
which will both reduce the error and improve its reliability. The current study will give a general
indication of how accurate one-loop predictions are, and thus indicate the reliability of the error
estimate used in [8]. The bilinears are also of phenomenological interest in their own right for the
determination of quark masses.

The asqtad light-quark matching factor Zm was calculated non-perturbatively in [3], using the
RI/MOM scheme. It is however advantageous to use a matching scheme that is less sensitive to the
effects of low-energy QCD. In Section 3 we present results for the scalar and pseudoscalar bilinear
channels using the RI/SMOM scheme. We find a significant reduction in non-perturbative splitting
between these channels and weaker mass dependence relative to the RI/MOM case.

2. Exceptional NPR

We compute bilinear Z-factors for all spin (γS) and taste (ξF) structures. These fall into 35
irreducible representations (irreps) under the lattice symmetry group, which are enumerated in
Table 1. Unlike with Wilson or domain wall fermions, staggered bilinears are slightly non-local,
spread over a 24 hypercube and requiring gauge links in their definition. Their connection with the
continuum bilinears may be expressed as follows:

Q(x)(γS⊗ξF)Q′(x)∼= ZγS⊗ξF ∑
A,B

χA(n) (γS⊗ξF)ABUn+A,n+B χ
′
B(n) . (2.1)

Here χA(n) is a single-component field located at site n+A, where n labels the hypercube and
A a site within the hypercube. The Q(x) are four-component Dirac spinors that also come in
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# links S V T
4 (1⊗ξ5) (γµ ⊗ξµξ5) (γµγν ⊗ξµξνξ5)

3 (1⊗ξµξ5) (γµ ⊗ξ5) (γµ ⊗ξνξρ)
[
(γµγν ⊗ξµξ5) (γµγν ⊗ξρ)

]
2 (1⊗ξµξν) (γµ ⊗ξν) (γµ ⊗ξνξ5)

[
(γµγν ⊗1) (γµγν ⊗ξ5)

]
(γµγν ⊗ξνξρ)

1 (1⊗ξµ) (γµ ⊗1) (γµ ⊗ξµξν)
[
(γµγν ⊗ξν) (γµγν ⊗ξρξ5)

]
0 (1⊗1) (γµ ⊗ξµ) (γµγν ⊗ξµξν)

Table 1: Covariant bilinears forming irreps of the lattice symmetry group. Indices µ , ν and ρ are
summed from 1− 4, except that all are different. Pseudoscalar and axial bilinears are not listed:
they can be obtained from scalar and vector, respectively, by multiplication by γ5⊗ ξ5. Bilinears
related in this way have the same matching factors. This operation also implies the identity of the
Z-factors for the tensor bilinears within square brackets. Bilinears marked in blue are used as the
denominators of the ratios discussed in the text.

four “tastes” (indices left implicit). Un+A,n+B is an average over all minimal length gauge paths
connecting n+A to n+B.

We compute quark propagators on coarse (a ≈ 0.12 fm) and fine (a ≈ 0.09 fm) MILC gauge
ensembles, using both asqtad and HYP-smeared valence actions at three masses for which amval =

amsea. The use of momentum sources results in small statistical errors with relatively few (∼ 10)
configurations. One feature that distinguishes NPR using staggered fermions is that for each phys-
ical momentum p, 16 inversions must be performed corresponding to p+ πA and the resulting
momentum-space propagator is a 16×16 matrix.

The gauge links used in the the construction of the bilinears are smeared. For the HYP valence
action we use HYP smearing; for the asqtad valence action we use “Fat 7 + Lepage” smearing.

We impose RI’/MOM renormalization conditions on the bilinears of Equation (2.1) for a num-
ber of physical momenta (∼ 10) at each mass, and extrapolate these results to the chiral limit. The
pseudoscalar channel has a non-perturbative 1/m dependence and we do not present the results for
it here.

We present our comparisons to PT in terms of ratios of Z-factors with the same spin-structure
but different tastes. This makes the perturbative predictions especially simple because the contin-
uum running cancels in the ratio:

ZS⊗F1(p)
ZS⊗F2(p)

= 1+
α(µ0)

4π

[
CLAT

S⊗F2−CLAT
S⊗F1

]
, (2.2)

where µ0 is on the order of the lattice scale and is not related to the renormalization scale p. Since
the ratios calculated non-perturbatively are sensitive to lattice artifacts and low-energy effects of
QCD, their variation with respect to p provides an indicator as to whether one is in the NPR
window.

Results for the fine HYP and asqtad ratios at a single scale p = 2.1 GeV ((ap)2 = 0.81) are
presented in Figure 1 and Figure 2. The perturbative results are evaluated with α(3 GeV) = 0.24.
For the HYP ratios, we see good agreement with PT for the vector, axial vector, and tensor ratios at
around the percent level. The scalar channel shows agreement at the 5 – 10 % level. Similar results
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Figure 1: Comparison of Z-factor ratios for vector, axial, tensor and scalar bilinears to perturbation
theory for HYP fermions on fine MILC lattices. Horizontal lines show perturbative predictions,
with solid/dotted lines showing results with/without mean-field improvement. Results are in the
chiral limit for the momentum described in the text.

were found on the coarse MILC lattices [5]. Overall, they indicate agreement at or better than the
naive expectation of O(α2) truncation errors. The variation of these quantities with renormalization
scale is shown in the left-hand column of Figure 3.

For the asqtad ratios, the vector, axial vector, and tensor agree with perturbation theory at the
few-percent level, while the scalar ratios show significant discrepancy (∼ 25%). The variation of
these quantities with renormalization scale is shown in the right-hand column of Figure 3. For both
the HYP and asqtad cases, the nonperturbative values in the scalar channel more nearly approach
the perturbative predictions as (ap)2 increases.

3. Non-exceptional NPR

Here we present our first results for staggered NPR using a non-exceptional scheme (RI/S-
MOM) [9]. Non-exceptional schemes have reduced sensitivity to nonperturbative effects com-
pared to their exceptional counterparts, increasing the range of the NPR window. They achieve this
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Figure 2: As for Fig. 1 except for asqtad fermions. Only results from mean-field improved PT are
shown.

by using a kinematic setup that retains a single kinematic invariant but for which no channel has
zero momentum flow (i.e. there are no “exceptional” channels). In the case of bilinears, the flow
through the external quark lines satisfies p2

1 = p2
2 = (p1− p2)

2. Figure 4a shows the nonperturba-
tive splitting between the scalar and pseudoscalar channels in the exceptional and non-exceptional
cases. Figure 4b compares the mass dependence of the scalar channel for the exceptional and
non-exceptional cases. The non-exceptional setup has a much weaker mass dependence. This will
improve the determination of Zm using the asqtad action, where the strange sea-quark mass is fixed
and cannot be extrapolated to zero.

4. Conclusion

We have presented non-perturbative matching factors for staggered bilinears using both HYP-
smeared and asqtad valence actions, comparing our results to the predictions of one-loop pertur-
bation theory over a range of momenta. We generally find good agreement (up to O(α2)) for the
Z-ratios presented here, except in the asqtad scalar channel (particularly for small (ap)2).

We also present the first study of non-exceptional schemes using staggered fermions. We ver-
ify that nonperturbative splitting between the scalar and pseudoscalar channels is greatly reduced
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Figure 3: Momentum dependence of Z-ratios for HYP (left column) and asqtad (right column)
fermions, calculated on fine MILC lattices. The colors correspond with those of the data plotted at
a single scale in Figure 1 (HYP) and Figure 2 (asqtad).
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(a) Non-perturbative splitting of the scalar and pseu-
doscalar channels using an exceptional (E) and
non-exceptional (NE) scheme.
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(b) Mass dependence of the scalar channel in the
exceptional (E) and non-exceptional (NE) schemes.

relative to the exceptional case. The mass dependence of the scalar channel is also much milder,
which should lead to an improvement in the determination of Zm using this action.

Detailed descriptions of these results and associated theoretical work are in preparation [10].
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