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1. Introduction

Numerical simulations are one of the main tools that allowtausbtain quantitative results
in many fields of physics, and they have played an essentislirpahe progress of QCD and
condensed matter physics in recent years. There are, hgweany interesting physical systems
for which we do not have efficient numerical algorithms yetxafples include QCD at finite
density or with a non-vanishin§ term. This situation has hindered progress in such fields for
long time, and it is thus of great interest to study novel $ation algorithms.

In the present work we develop and test a geometric algonithinh is applicable to the two-
dimensional antiferromagnetic Ising model with an imagyrmaagnetic field® (see [1] and [2]) at
6 = m, and which solves the sign problem that this model has whieig ssandard algorithms.

2. Themodel and a geometric algorithm

We start with the (reduced) Hamiltonian for the Ising modean external magnetic field,

h
H F,h)=—F =Y s 2.1
({s<},F.h) (X&;E:@S(Sy 5 st (2.1)
We denote the sites of the square two-dimensional latticg by(i, j), with i,j € {1,2,...,N},

N =2n € N, and the spin variables b € {+1}. The sumy ) runs over the se# of all
nearest-neighboréx,y); F = J/(KT) is the reduced coupling between spins, &nd 2B/(KT),
with B the external magnetic field. The total number of spin‘sl%& 4n?, thus even, and therefore
the quantityQ = 1 5, s is an integer number, taking values betweed?/2 andN?/2, which can
be thought of as playing the role of a topological charge. Yedargerested in studying this system
for imaginary values of the reduced magnetic fielde., forh=1i6.

This model suffers from a sign problem, because the weighatoifiguration is not a positive
real number, and therefore we cannot apply a standard tdguoriFor the special cagg= T we
will show how to construct an efficient geometric algorithmattcircumvents this problem.

The partition function of the system @t= rmis

Z(F,0=m) = z eF Sixyer S Tig 3%
{s=+1}

N2

{ [cosnF&s/>+siansASy>1nsz} 22)
{sx=%1} L (xy)es z

{ [cosHF) + sinh(F)s,s,] |‘| sz} .
{s=£1} Lxy)ez z
It is easy to see, by decomposing the lattice in two staggaubthttices, thaZ (F, m) = Z(—F, r);
therefore, ab = 1, the ferromagnetic and antiferromagnetic models haveghwgartition func-
tion, and furthermoré is in fact a function ofF|.

We can now expand the product inside the curly brackets, ssidraa unique graph to each
term in the expansion: to each factor gijif)s,s, we assign the bongx,y) € % in the graph,
and we say that such a bond is active. Every other bond isdcalbetive, and corresponds to
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a factor cosfiF|). Each subset of active bonds describes one and only one ¢értims in the
expansion. After summing over spin states most of the dartidns in the expansion vanish; only
the graphs such that every node on the lattice has an odd muwhaetive bonds touching it give
a non-vanishing contribution. We call such graphs admissénd we denote by the set of all
admissible graphs. If we consider an admissible grgph$¥, and denote by/4,(g) the number
of active bonds irg, by JVE(g) the number of inactive bonds @ and by.4" the total number of
bonds in the lattice (thust” = .#(g) +.45(9)), the weight of such graph in the partition function
is 2V sinh(|F|)~"%(9 cosh(|F|)-*(9). Therefore we can rewrite the partition function as:

Z(F.0=m) =2V 3 cosh(F|)"5(9 sinh(|F )9

geYy

=2V cosh(|F|)" Y tanh(|F|)"5©

gevy

(2.3)

The important point here is that all configurations (grapghe)e positive weights, and therefore
this representation of the partition function does not hegggn problem. Now, generalizing the
partition function (2.3) to the case where the coupling isifian-dependent, we obtain:

Z({Fy},6 =m) = [cosH([Fy|) +sinh(|Fy|)sis,] [ ] Sz} - (2.4)

{s=%1} {(X-,y)e%

From this expression we are able to build all the correlatimttions for an even number of spins
(correlation functions with an odd number of spins are aattically zero). After some calculations
(see [3]) we obtain the following expression for the cottielafunctions:

d
C(d,F) = (8Sa1) = [ﬂ 0%“] logZ({Fy},0 =) —

= ((tanh(F)9-2%lotavillyy - (2.5)

where 45[0, {%,Yi }] is the number of active bonds along the straight path comgegtand x +
d1l. However, we stress the fact that the specific choice of #tle is irrelevant, as they are all
equivalent, as long as the endpoints are fixed.

3. Simulation

In order to perform calculations by means of Monte Carlo ré#h we need an efficient
algorithm to explore the space of configurations, that ingbeemetric representation is given by
the set of admissible graph®,. The essential ingredient is a local prescriptithat takes the
system from an admissible configuration to another adniéssimfiguration. The simplest change
that one can do to a configuration is to make an inactive botwdan active one, or viceversa.
However, applying this change to an admissible configumatiil not take us to another admissible
configuration. Let us consider instead an arbitrary squarthe lattice, and consider all possible

ILocal in the sense that only a fixed number of bonds in a bourefgidn are changed when updating a configura-
tion.
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changes in the state of the bonds in the square. It is easynince oneself that if we start from
an admissible configuration, the only way to arrive at anodamissible configuration is either
by not changing the state of any of the bonds, or by changingf &hem. Using these steps and
the weights of the configurations derived above, it is nowy dasset up a standard Metropolis
algorithn?.

Our aim is to measure how the correlation functions (2.5edédmn the distance, choosing
different antiferromagnetic couplings < 0 and varying the lattice volumé = L2, in order to
determine the staggered magnetization from their asymogiehavior. In Figs. 1 and 2 we present
some preliminary results concerning the evaluation ofdlwsrelation functions for different val-
ues of the coupling= and various lattice sizes ranging from= 64 to L = 1024. Simulations
are done collecting 100k measurements for each valle dfor each run we discarded the first
10k configurations in order to ensure thermalization. Tlo&Kaife method over bins at different
blocking levels was used for the data analysis.

For antiferromagnetic couplings, the behavior of the dati@en functions implies that the
staggered magnetization is nonzero, while the total magat&n vanishes, in the whole range of
couplings that we investigated. This result is in agreemathtRefs. [1, 2], and with the mean-field
calculation of Ref. [4]. The apparent decreas€@f,F ), starting fromd ~ 10-- 20, for low values
of |F|, is probably due to the heavy-tailed probability distribos of the correlators, which is also
the cause of their noisy behavior. In Fig. 3 we show the pritibadistributions of the logarithm of
the correlators for lattice size= 64 andF = —0.4 andF = —2.0. We can clearly notice that for a
low coupling|F | the values are spread in a wider range tharfrfer —2.0, and also that a long tail is
developed for large distances. This makes more difficulbtaio an accurate numerical evaluation
of the correlators. More details will be presented in [3],enalso the three-dimensional version
of the model will be investigated.
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2In order to achieve ergodicity for periodic boundary coiutis, we have to implement a few, global steps (more
details in [3])
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Figure 1: Dependence of the correlation functions on the distahfe different values of the coupling

and for various lattice sizds
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Figure 2: Dependence of the correlation functions on the distahfe different values of the coupling
and for various lattice sizds
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Figure 3: Probability distribution of the logarithm of the correlato(d, F) for various distanced, for a
lattice of sizeL = 64, and for coupling- = —0.4 (up) andr = —2.0 (down).



