
P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
2
)
2
5
3

Investigation of the phase structure of a chirally-
invariant Higgs-Yukawa model

John Bulavaa, Philipp Gerholdb,c, George W.-S. Houd , Karl Jansenc,
Bastian Knippschildd , C.-J. David Line,h, Kei-Ichi Nagai f , Attila Nagy∗b,c,
Kenji Ogawag

a CERN, Physics Department, 1211 Geneva 23, Switzerland
b Institut für Physik, Humboldt-Universität zu Berlin, D-12489 Berlin, Germany
c NIC, DESY, Platanenallee 6, Zeuthen D-15738, Germany
d Department of Physics, National Taiwan University, Roosevelt Road, Taipei 10617, Taiwan
e Institute of Physics, National Chiao-Tung University, Hsinchu 300, Taiwan
f Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Aichi 464-8602, Japan
g Department of Physics, Chung-Yuan Christian University, Chung-Li 32023, Taiwan
h Division of Physics, National Centre for Theoretical Sciences, Hsinchu 300, Taiwan

E-mail: nagy@physik.hu-berlin.de
E-mail: b.knippschild@gmx.de

We present new data on our ongoing project on the investigation of the phase structure of the
Higgs-Yukawa model at large bare Yukawa couplings. The data presented last year [1] are ex-
tended in terms of statistics, the number of bare Yukawa couplings at existing, and new larger vol-
umes. In addition, this study is extended by a finite temperature project at the physical top quark
mass mt = 175 GeV and a hypothetical fourth generation top quark with a mass of mt ′ = 700 GeV.
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1. Introduction

Standard Model Electroweak Baryogenesis has difficulties explaining the matter-antimatter
asymmetry present in the universe. A first-order phase transition is required to fulfil one of the
Sakharov conditions, but the end point of the first-order phase transition line occurs at an unphysical
low Higgs boson mass [2, 3]. The transition is first order in the Standard Model and second order
in the pure φ 4 theory, but the situation is less clear when fermions with strong Yukawa coupling
are added, in particular when a heavy fourth generation of quarks are considered [4, 5].

It is known that the Higgs-Yukawa model approaches the non-linear σ -model at asymptotically
large Yukawa couplings [6], but it is not known where this behaviour sets in. We investigate the bulk
phase transition of the Higgs-Yukawa model non-perturbatively at large bare Yukawa couplings
with lattice techniques at finite and zero temperature. In contrast to previous calculations [7], we
consider a chirally invariant fermion action [8] with a complex scalar doublet φ and a fermion
doublet ψ = (t,b)T . We wish to investigate the possibility of an intermediate region in the Yukawa
coupling where the ultraviolet behaviour may not be trivial anymore and a heavy fourth generation
of quarks is possible.

2. Simulation details

The discretised action of a four-component scalar field theory with quartic self interaction is

Sφ =−2κ ∑
x,µ

φ
α
x φ

α

x+µ̂
+∑

x

[
φ

α
x φ

α
x + λ̂ (φ α

x φ
α
x −1)2

]
. (2.1)

where α labels the four components of the scalar fields, κ is the so-called hopping parameter which
is related to the Higgs bosons mass, λ̂ is related to the bare quartic self-coupling, and the lattice
spacing a is set to 1. The sum is performed over all space time points, x, and four dimensions,
µ . For the lattice fermion action which includes the Yukawa interaction of the Higgs vev and the
fermions, we use the overlap operator D (ov)

SF = Ψ̄M Ψ, where M = D (ov)+P+ Φ
† diag(yt ,yb) P̂++P− diag(yt ,yb) Φ P̂−, (2.2)

with

Φ =

(
φ 2 + iφ 1

φ 0− iφ 3

)
, and P± =

1± γ5

2
, P̂± =

1± γ̂5

2
, γ̂5 = γ5

(
1−D (ov)

)
. (2.3)

The Yukawa couplings are set to yt = yb = y, to ensure that the fermion determinants are positive
definite. The scalar field configurations are generated with the polynomial Hybrid Monte Carlo
algorithm [9], treating the weight factor as an observable [10]. Our measurements are performed
on ∼ 2000−5000 thermalised trajectories.

3. Basic observables and analysis

The phase structure of a theory can be investigated by measuring an order parameter which
is the scalar vev, v, in our case. It is zero in one phase, the symmetric phase, and non-zero in
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another phase, the broken phase, respectively. All investigated phase transitions of our model are
found to be of second order where the change in v is smooth. The universality classes of second
order phase transitions are defined via the anomalous dimension of the operators which are allowed
by the symmetries of the theory. Anomalous dimensions will be called critical exponents to draw
analogy with statistical mechanics.

In the lattice Higgs-Yukawa model v would vanish in both phases without the use of exter-
nal sources which renders the computation rather demanding. However, it can be replaced by an
alternative method described in Refs. [11, 12] where the scalar fields are rotated

〈φrot〉=

(
0
v

)
, v =

√
2κ〈m〉, (3.1)

and projected on the direction of magnetisation

m =
1

V4

(
∑
α,x
|φ α

x |2
)1/2

(V4 is the 4−dimensional volume). (3.2)

The vev computed in this way coincides with the scalar vev in the infinite-volume limit. In finite
volume, it can be shown that this method is equivalent to the method with external sources [12].

It is challenging to extract the critical exponents. As mentioned before, second order phase
transition are smooth transitions from the broken to the symmetric phase and become cross-overs
in a finite volume. Hence, finite size scaling techniques can be used to determine the critical
exponents. We use two different methods here.

The first method is based on the susceptibility

χm =V4

(〈
m2〉−〈m〉2 ,) , (3.3)

which is the connected two-point function and it is proportional to the correlation length ξ ∝
√

χm

which diverges in the infinite-volume limit. Close to the critical point, its finite size scaling be-
haviour is given by

χm (t,L) ·L−γ/ν
s = g

(
tL1/ν

s

)
, with t =

[
T/
(

T (L=∞)
c −C ·L−b

s

)
−1
]

(3.4)

where, Ls is the spatial lattice extent, T stands either for the Yukawa coupling or the hopping
parameter, respectively, T (L=∞)

c is its critical value in infinite volume, g is an unknown universal
scaling function, γ and ν are related to the anomalous dimension of the scalar field and the mass
operator, respectively, and C and b are phenomenological parameters. The critical exponents can
be extracted from a fit to the susceptibility via the partly-empirical fit function defined in Ref. [13]

χm = A
(

L−2/ν
s +B± · t2

)−γ/2
, (3.5)

where A and B± are phenomenological parameters. The parameter B− is used when t ≤ 0 and B+

when t > 0.

An alternative procedure to extract the critical exponent, ν , is via Binder’s cumulant [14]

QL = 1−
〈
m4
〉

3〈m2〉2
, (3.6)

which is the connected four-point function, normalised by the square of the two-point function.
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Binder’s cumulant is related to the renormalised scalar quartic coupling in the infinite-volume limit
by the proportionality factor V4/ξ 4 [15]. The great advantage of this quantity is the milder scaling
violation due to higher-dimensional operators [16, 17]. To extract the critical exponent, ν , from
Binder’s cumulant we use a method described in Ref. [18]. This method relies on the fact that the
scaling behaviour close to the critical point of Binder’s cumulant is given by

QL = gQL

(
t̂L1/ν

)
, with t̂ = (T/Tc−1), (3.7)

where gQL is an unknown universal scaling function, which can be mimicked using part of the data.

The analysis for the zero temperature phase transition presented in the following assumes that
the Higgs-Yukawa model is not trivial at large bare Yukawa couplings. It was shown in Ref. [19–23]
that logarithmical corrections may need to be included in the finite size scaling in a trivial theory.
This will be investigated in the future.

4. Large Yukawa coupling

The phase structure of the Higgs-Yukawa model is investigated at large bare Yukawa cou-
plings. This is interesting because large renormalised Yukawa couplings would lead naturally to a
heavy fourth generation even with the presence of a light Higgs Boson. In addition, it is not clear
if the model is trivial in this region and hence perturbation theory is applicable. This would resolve
the hierarchy problem as perturbative artefacts. To reveal the universality class we compute the
critical exponents with the methods discussed previously.

Our simulations have been performed at two κ values, κ = 0.00 and 0.06, with the bare
Yukawa coupling y in the range between 14 and 25. The bare scalar quartic coupling λ̂ is fixed to
infinity, which results in the largest possible Higgs mass [24–26].
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Figure 1: Fits according to eq. 3.5 to susceptibility for several volumes at κ = 0.00 and κ = 0.06.

The fits to susceptibility with eq. 3.5 are shown in Fig. 1 for both κ values. A clear dependence
of the peak position on the volume can be observed which is accommodated with the phenomeno-
logical parameters C and b in eq. 3.5. The finite size scaling of susceptibility according to eq. 3.4
is shown in Fig. 2 where the parameters are set from the fits. It is found to be very good.

Rescaled Binder’s cumulant is shown in Fig 1 for both κ-values after rescaling according to
eq. 3.7 with the method described in Ref. [18]. From this method the critical exponent, ν , and the
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critical Yukawa coupling in infinite volume can be extracted with high precision. However, the
scaling is only good close to the critical point and further tests are needed to stress the interval in
which this method is applicable.
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Figure 2: Test of finite size scaling of eq. 3.4 of susceptibility.

Q
L

t ·L
1
ν
s

κ = 0.00
L=8

L=12
L=16
L=24

0.48

0.52

0.56

0.60

0.64

0.68

-15 -10 -5 0 5 10 15

Q
L

t ·L
1
ν
s

κ = 0.06
L=8

L=12
L=16

0.48

0.52

0.56

0.60

0.64

0.68

-15 -10 -5 0 5 10 15

Figure 3: Rescaled Binder’s cumulant after using the curve collapse method from Ref. [18].

The critical Yukawa couplings in infinite volume and critical exponents are summarised in
Table 1. All quoted errors are purely statistical but a preliminary analysis of systematic errors from
the dependence of the fit interval and the interval where the curve collapse methods is used has been
performed. The systematic errors of the fit are of the order of the statistical ones but the systematic
errors of the curve collapse method can be five times larger than the corresponding statistical error.
Within the combination of statistical and systematic errors the fit and the curve collapse method
give consistent results. The critical exponent, ν , is at least two standard deviations away from its
trivial value of 0.5. This deviation must be investigated further to reveal if this is a purely statistical
effect, due to the neglecting of the mentioned logarithmic correction or, more excitingly, if we
found a different ultraviolet behaviour.

yc(L = ∞) ν γ

κ = 0.00 κ = 0.06 κ = 0.00 κ = 0.06 κ = 0.00 κ = 0.06

fit to χm 16.676(15) 18.119(67) 0.541(22) 0.576(28) 0.996(15) 1.038(30)
method from [18] 16.667(27) 18.147(24) 0.525(6) 0.550(1)

Table 1: Preliminary results for the critical Yukawa couplings and exponents.

5. Finite temperature
Here we want to present first results of our finite temperature studies for a physical top quark.

The simulations for a very heavy fourth generation quark at m f ≈ 700 GeV are in production. In
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particular, we are interested in the critical temperature where the system goes from a symmetric
phase into a broken phase, as well as the order of the phase transition. The temperature of the
system is given by

T =
1

aLt
=

Λ

Lt
, (5.1)

where Lt is the number of lattice points in temporal direction. The lattice spacing a and hence the
cutoff Λ which is inversely proportional to the lattice spacing will be set in a later zero temperature
run via the renormalised vev.

The finite temperature runs are performed at two fixed bare Yukawa coupling values to fix
fermion masses at m f ≈ 175 GeV and m f ≈ 700 GeV while the scan is performed in κ which
is equivalent to varying the temperature. To investigate discretisation effects, simulations for two
values of the temporal extend (Lt = 4,6) are performed, and to study volume effects, three different
spatial volumes (L = 16,20,24) are investigated.

The magnetisation at fermion mass of m f = 175 GeV is shown in Fig. 4 for two different tem-
poral extends and three volumes. A clear trend of the magnetisation from the symmetric phase with
very small magnetisation to the broken phase with large magnetisation can be observed. This trend
is very smooth without any jumps and hence it is a clear indication for a second order phase tran-
sition. However, further analysis of susceptibility will show if the critical exponents are consisted
with the ones from mean field theory. This will tell us if this phase transition differs in any kind
from the phase transition observed in pure O(4)-model.
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Figure 4: Magnetisation at m f ∼ 175 GeV for three different volumes and two temporal extends.

6. Summary and outlook

We have found a second order bulk phase transition at large values of bare Yukawa coupling.
It is not clear if the critical exponents are consistent with the trivial ones from the O(4)-model or
if we found different ultraviolet behaviour in this regime. Possible logarithmic contributions to the
finite size scaling have not been investigated yet but will be worked out in the future. A new scan
at κ = 0.1 is in progress and more statistics are collected at existing data points. This will allow
us to investigate the difference between the critical exponents of the Higgs-Yukawa model and the
O(4) model in more detail.

The finite temperature phase transition is found to be of second order for fermions with a
physical top quark mass. The simulations for the very heavy fermions are in productions and we
will be able to investigate the phase transitions there shortly. Also, the critical temperature has to
be computed in both cases and must be compared to the findings of pure O(4)-model.
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