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1. Introduction

Locality of the overlap-Dirac operator is not obvious, since its definition [1]

aDov = 1+ γ5
HW

|HW | , (1.1)

includes an operator HW in the denominator. Here, HW is the hermitian Wilson-Dirac operator
HW = γ5DW , that is used as a kernel to construct Dov. Superficially, if the eigenvalue spectrum of
Hw contains near-zero modes, the overlap-Dirac operator may violate locality.

The locality is known to be satisfied at weak couplings. To be specific, on background gauge
configurations satisfying some smoothness condition, one can show that Dov is exponentially local-
ized [2], i.e. |(Dov)xy| ≤ exp(−|x−y|/ℓ) with a localization length ℓ. This condition is however too
strong for practical setup used in present lattice QCD simulations; numerical tests are necessary
for more realistic cases.

Golterman and Shamir conjectured that the overlap-Dirac operator defined outside of the Aoki
phase is local [3]. Contrary to the original argument [4], the Aoki phase in this case defined by the
profile of near-zero modes: inside the Aoki phase the near-zero modes are extended in space, while
they are localized outside. The value of eigenvalue λc above which the eigenmodes are extended
is called the mobility edge borrowing the terminology of condensed matter physics. Then, the
localization length of the overlap-Dirac operator is determined either by 1/λc or ℓ(λ ) (|λ | < λc),
where ℓ(λ ) is the localization length of the individual low-lying modes. Thus, the question of the
locality crucially depends on the background gauge field.

The origin of the near-zero modes of |HW | is the roughness of the gauge configuration. A
simple analytic example is given in [5]. Therefore, the localization length is expected to increase
toward strong couplings or coarse lattices, and the definition of the overlap-Dirac operator becomes
more difficult. To avoid this problem one may introduce additional terms to the lattice action, such
as those proposed in [6]. They consist of two flavors of heavy Wilson fermions and their associated
ghosts carrying a twisted mass term

Sex = ∑
x

χ̄ (x)DW (m0)χ (x)+∑
x

ϕ̄ (x) [DW (m0)+ iµγ5τ3]ϕ (x) , (1.2)

where χ denotes Wilson fermions with a negative mass m0. The second term represents bosonic
fields to cancel the bulk of the effects of Wilson fermions. In fact, the action generates a suppression
factor

det

[
HW (m0)

2

HW (m0)
2 +µ2

]
(1.3)

in the partition function. Then, the gauge configuration with small eigenvalues of HW (m0) lower
than µ is suppressed, and the potentially dangerous near-zero modes disappear from the eigen-
value spectrum. Since the low-lying eigenvalue can never cross zero due to the suppression factor
detHW (m0)

2, global topology of the gauge field configuration does not change under continuous
deformations. The simulations are thus confined in a given topological sector with this action.

In this work, we investigate the spectrum of HW and the locality of Dov in the strong coupling
regime with or without the extra Wilson fermion terms. The purpose of the study is to explore the
possibility to use the overlap fermion at coarser lattices than currently available ones.
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µ 0 0.2
β 5.95 5.83 5.63 5.50 5.43 5.78 5.68 5.48 5.28

a(fm) 0.10 0.12 0.15 0.27 - 0.10 0.12 0.14 0.27

Table 1: Lattices parameters
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Figure 1: Near-zero eigenvalue distribution of |HW | plotted in the logarithmic scale. The five clusters on the
left show the results for the standard gauge action while the right four clusters are those with the low-mode
suppression term.

2. Eigenvalue distribution

In this study, we use quenched lattices (no dynamical light fermions) at the β values listed
in Table 1. Lattice size is 163 ×32 and the gauge action is the standard Wilson gauge action. We
consider the lattices with and without the low-mode suppression term (1.3). In the Table, the lattices
without that term are denoted by µ = 0 as the extra factor cancels in this case. The large negative
mass am0 is −1.6, and the number of gauge configurations studied is 10 for each parameter. Lattice
spacing a is estimated using the Sommer scale r0 extracted from the static quark potential.

We calculate 20–40 lowest eigenvalues of |HW | on these lattices. Figure 1 shows those near-
zero eigenvalue distribution in a logarithmic scale. It is clear that the number of low-modes in-
creases on coarser (or smaller β ) lattices. With the low-mode suppression term (four right clusters),
they are indeed highly suppressed. Compared at similar lattice spacings, the lowest eigenvalue is
1–2 orders of magnitude higher.

According to the Banks-Casher relation [8], the absence of the low-lying modes implies that
the flavor-parity symmetry broken phase as defined by Aoki is not entered for these lattices. This
is the effect of the low-mode suppressing term, though the gap is rather small at coarser lattices.
The practical question is then how large the localization length is for these coarse lattices, which is
addressed in the next section.
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Figure 2: fbin(r) on the quenched gauge configurations without the low-mode suppressing term (µ = 0.0).
The data are shown for β = 5.95 (top left), β = 5.83 (top right),β = 5.63 (middle left), β = 5.50 (middle
right), and β = 5.43 (bottom). The eigenmodes are binned in different ranges of the eigenvalues as indicated
in the legend of each plot.

3. Localization of eigenmodes

In order to investigate the locality of Dov we look at the spatial profile of low-lying modes. For
each eigenmodes ϕi(x) of HW , we define ρi(x) and fi(r) as

ρi = ϕ †
i (x)ϕi(x), ρi(x0) = max

x
{ρi (x)} , (3.1)

fi (r) = {ρi (r) |r = |x− x0|} (3.2)

following to [9]. Namely ρi(x) is the strength of the mode, and fi(r) represents the profile of that
mode as a function of the distance from the position where ρi(x) has a maximum. In calculating
fi(r), different orientations giving the same r are averaged.

In Figure 2, we plot fi(r) averaged over configurations after binning the eigenmodes in dif-
ferent ranges of their eigenvalues, that we call fbin(r). At the β values above 5.63, we find a clear
fall-off of the eigenmodes as a function of r. That is true even at the highest bin we measured. This
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Figure 3: Same as Figure 2 but with the low-mode suppression term (µ = 0.2). The data are shown for
β = 5.78 (top left), β = 5.68 (top right), β = 5.48 (bottom left), and β = 5.28 (bottom right).

indicates that Dov constructed on these gauge configurations is local with the length controlled by
the fall-off of these low-lying modes.

At β=5.50 and 5.43, on the other hand, we find that fbin(r) becomes flat beyond r ≃ 5. It
means that the system is already in the Aoki phase. This results is consistent with results of [10],
where the mobility edge falls down to zero at β = 5.5 and am0 =−1.5.

Once we introduce the low-mode suppression term, not only the eigenvalue spectrum but the
profile of the eigenmode changes as shown in Figure 3. Even at the β value as low as 5.28, where
the lattice spacing is roughly 0.27 fm, the low-lying modes are still localized. This implies that
these parameter regions are outside of the Aoki phase. In other words, the Aoki phase structure
is drastically changed by the effect of the low-mode suppressing term. The phase structure of the
Wilson fermion would thus be changed as illustrated in Figure 4.

4. Locality of overlap-Dirac operator

The localization length of the overlap-Dirac operator Dov can also be extracted directly from
the behavior of Dov. We first set a source field as

ηα (x) =

{
1 x = (0,0,0,0)

0 otherwise
, (4.1)

where α is an index of internal degree of freedom for fermions. Then we calculate a norm of a
vector ψ (x) = sgn(HW )η (x)

f (r) = ∥ψ (x)∥ , r = ∥x∥ . (4.2)
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Figure 4: Expected phase structure of the Wilson fermion after the low-mode suppression term is included.
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Figure 5: ⟨ f (r)⟩ as a function of r. Data for the low-mode suppressed gauge configurations: µ = 0.2.

In Figure 5, we plot ⟨ f (r)⟩ as a function of r on the gauge configurations generated with the
low-mode suppressing term. For all four β values calculated, ⟨ f (r)⟩ is rapidly decaying as distance
r increases.

To determine the localization length, we fit ⟨ f (r)⟩ to an exponential function

⟨ f (r)⟩= cexp(−r/l) , (4.3)

at large distances r. The results for the localization length l is listed in Table 2. It shows that
the overlap-Dirac operator can be properly defined at strong couplings as far as the low-mode
suppressing term is introduced.

β l (localization length)

5.78 0.58
5.68 0.57
5.48 0.60
5.28 0.76

Table 2: Localization length calculated on the gauge configurations with the low-mode suppressing term
µ = 0.2.
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5. Conclusion

We studied the effect of the low-mode suppressing term on the locality of the overlap-Dirac
operator. By inspecting the low-lying eigenmodes of HW , we find the the mobility edge is finite
even at β = 5.28, which corresponds to a ≃ 0.27 fm.

Numerical calculations are performed on Hitachi SR16000 at High Energy Accelerator Re-
search Organization (KEK) under a support of its Large Scale Simulation Program (No. 11-05).
SH is supported in part by the Grant-in-Aid of the Japanese Ministry of Education (No. 21674002).
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